Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

TLE family member 6, subcortical maternal complex member OKDB#: 3831
 Symbols: TLE6 Species: human
 Synonyms: GRG6, PREMBL  Locus: 19p13.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment This gene forms complex with mater and PADI6. A maternal effect gene.///////////Identification of a human subcortical maternal complex. Zhu K et al. (2015) Maternal effect genes play essential roles in early embryonic development. However, the mechanisms by which maternal effect genes regulate mammalian early embryonic development remain largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that is composed of at least four proteins encoded by Mater, Floped, Tle6 and Filia and is critical for mouse preimplantation development. The present study demonstrates that human SCMC homologous genes (NLRP5, OOEP, TLE6 and KHDC3L) are specifically expressed in the oocytes of human fetal ovaries. The proteins of this complex co-localize in the subcortex of human oocytes and early embryos. Furthermore, the SCMC proteins physically interact with each other when they are co-expressed in cell lines. These results indicate that human NLRP5, OOEP, TLE6 and KHDC3L function as a complex in the oocytes and early embryos of Homo sapiens. Considering the important roles of the SCMC in mouse early embryogenesis, the characterization of the human SCMC will provide a basis for investigating human early embryonic development and will have clinical implications in human female infertility or recurrent spontaneous abortion.//////////////////

NCBI Summary: This gene encodes a member of the Groucho/ transducin-like Enhancer of split family of transcriptional co-repressors. The encoded protein is a component of the mammalian subcortical maternal complex, which is required for preimplantation development. In mouse, knock out of this gene results in cleavage-stage embryonic arrest resulting from defective cytoplasmic F-actin meshwork formation and asymmetric cell division. In human, an allelic variant in this gene is associated with preimplantation embryonic lethality. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2016]
General function
Comment
Cellular localization
Comment
Ovarian function Early embryo development
Comment Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species. Bebbere D et al. (2014) BackgroundThe sub-cortical maternal complex (SCMC), located in the subcortex of mouse oocytes and preimplantation embryos, is composed of at least four proteins encoded by maternal effect genes: OOEP, NLRP5/MATER, TLE6 and KHDC3/FILIA. The SCMC assembles during oocyte growth and was seen to be essential for murine zygote progression beyond the first embryonic cell divisions; although roles in chromatin reprogramming and embryonic genome activation were hypothesized, the full range of functions of the complex in preimplantation development remains largely unknown.ResultsHere we report the expression of the SCMC genes in ovine oocytes and pre-implantation embryos, describing for the first time its expression in a large mammalian species.We report sheep-specific patterns of expression and a relationship with the oocyte developmental potential in terms of delayed degradation of maternal SCMC transcripts in pre-implantation embryos derived from developmentally incompetent oocytes.In addition, by determining OOEP full length cDNA by Rapid Amplification of cDNA Ends (RACE) we identified two different transcript variants (OOEP1 and OOEP2), both expressed in oocytes and early embryos, but with different somatic tissue distributions. In silico translation showed that 140 aminoacid peptide OOEP1 shares an identity with orthologous proteins ranging from 95% with the bovine to 45% with mouse. Conversely, OOEP2 contains a premature termination codon, thus representing an alternative noncoding transcript and supporting the existence of aberrant splicing during ovine oogenesis.ConclusionsThese findings confirm the existence of the SCMC in sheep and its key role for the oocyte developmental potential, deepening our understanding on the molecular differences underlying cytoplasmic vs nuclear maturation of the oocytes.Describing differences and overlaps in transcriptome composition between model organisms advance our comprehension of the diversity/uniformity between mammalian species during early embryonic development and provide information on genes that play important regulatory roles in fertility in nonmurine models, including the human./////////////////
Expression regulated by
Comment Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Duncan FE et al. (2014) Fully grown oocytes in the ovary are arrested at prophase of meiosis I because of high levels of intraoocyte cAMP that maintain increased levels of cAMP-dependent protein kinase (PKA) activity. Following the luteinizing hormone surge at the time of ovulation, cAMP levels drop, resulting in a reduction in PKA activity that triggers meiotic resumption. Although much is known about the molecular mechanisms of how PKA activity fluctuations initiate the oocyte's reentry into meiosis, significantly less is known about the requirement for PKA activity in the oocyte after exit from the prophase I arrest. Here we show that although PKA activity decreases in the oocyte upon meiotic resumption, it increases throughout meiotic progression from the time of germinal vesicle breakdown (GVBD) until the metaphase II (MII) arrest. Blocking this meiotic maturation-associated increase in PKA activity using the pharmacological inhibitor H89 resulted in altered kinetics of GVBD, defects in chromatin and spindle dynamics, and decreased ability of oocytes to reach MII. These effects appear to be largely PKA specific because inhibitors targeting other kinases did not have the same outcomes. To determine potential proteins that may require PKA phosphorylation during meiosis, we separated oocyte protein extracts on an SDS-PAGE gel, extracted regions of the gel that had corresponding immune reactivity towards an anti-PKA substrate antibody, and performed mass spectrometry and microsequencing. Using this approach, we identified transducin-like enhancer of split-6 (TLE6)-a maternal effect gene that is part of the subcortical maternal complex-as a putative PKA substrate. TLE6 localized to the oocyte cortex throughout meiosis in a manner that is spatially and temporally consistent with the localization of critical PKA subunits. Moreover, we demonstrated that TLE6 becomes phosphorylated in a narrow window following meiotic resumption, and H89 treatment can completely block this phosphorylation when added prior to GVBD but not after. Taken together, these results highlight the importance of oocyte-intrinsic PKA in regulating meiotic progression after the prophase I arrest and offer new insights into downstream targets of its activity.//////////////////
Ovarian localization Oocyte
Comment A subcortical maternal complex essential for preimplantation mouse embryogenesis. Li L et al. We have identified a subcortical maternal complex (SCMC) that assembles during oocyte growth and is essential for zygotes to progress beyond the first embryonic cell divisions. At least four maternally encoded proteins contribute to this MDa complex: FLOPED, MATER, and TLE6 interact with each other while Filia binds independently to MATER. Although the transcripts encoding these proteins are degraded during meiotic maturation and ovulation, the SCMC proteins persist in the early embryo. The SCMC, located in the subcortex of eggs, is excluded from regions of cell-cell contact in the cleavage-stage embryo and segregates to the outer cells of the morulae and blastocyst. Floped(tm/tm) and/or Mater(tm/tm) eggs lack the SCMC but can be fertilized. However, these embryos do not progress beyond cleavage stage development and female mice are sterile. The proteins are conserved in humans, and similar maternal effect mutations may result in recurrent embryonic loss.
Follicle stages
Comment Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Gallardo TD et al. Female infertility syndromes are among the most prevalent chronic health disorders in women, but their genetic basis remains unknown because of uncertainty regarding the number and identity of ovarian factors controlling the assembly, preservation, and maturation of ovarian follicles. To systematically discover ovarian fertility genes en masse, we employed a mouse model (Foxo3) in which follicles are assembled normally but then undergo synchronous activation. We developed a microarray-based approach for the systematic discovery of tissue-specific genes and, by applying it to Foxo3 ovaries and other samples, defined a surprisingly large set of ovarian factors (n = 348, approximately 1% of the mouse genome). This set included the vast majority of known ovarian factors, 44% of which when mutated produce female sterility phenotypes, but most were novel. Comparative profiling of other tissues, including microdissected oocytes and somatic cells, revealed distinct gene classes and provided new insights into oogenesis and ovarian function, demonstrating the utility of our approach for tissue-specific gene discovery. This study will thus facilitate comprehensive analyses of follicle development, ovarian function, and female infertility. This is an oocyte-specific gene.
Phenotypes
Mutations 4 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Yu XJ et al. (2014) Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development. ​Tle6 Null mice are sterile, and the protein product of ​Tle6 is required for formation of SCMC in mouse oocytes and early embryos. Most importantly, we document a role for the SCMC as an oocyte–embryo-specific protein complex that controls symmetric division of mouse zygotes by regulating the actin cytoskeleton through Cofilin.

Species: human
Mutation name:
type: naturally occurring
fertility: embryonic lethal
Comment: TLE6 mutation causes the earliest known human embryonic lethality. Alazami AM et al. (2015) Embryonic lethality is a recognized phenotypic expression of individual gene mutations in model organisms. However, identifying embryonic lethal genes in humans is challenging, especially when the phenotype is manifested at the preimplantation stage. In an ongoing effort to exploit the highly consanguineous nature of the Saudi population to catalog recessively acting embryonic lethal genes in humans, we have identified two families with a female-limited infertility phenotype. Using autozygosity mapping and whole exome sequencing, we map this phenotype to a single mutation in TLE6, a maternal effect gene that encodes a member of the subcortical maternal complex in mammalian oocytes. Consistent with the published phenotype of mouse Tle6 mutants, embryos from female patients who are homozygous for the TLE6 mutation fail to undergo early cleavage, with resulting sterility. The human mutation abrogates TLE6 phosphorylation, a step that is reported to be critical for the PKA-mediated progression of oocyte meiosis II. Furthermore, the TLE6 mutation impairs its binding to components of the subcortical maternal complex. In this first report of a human defect in a member of the subcortical maternal subcritical maternal complex, we show that the TLE6 mutation is gender-specific and leads to the earliest known human embryonic lethality phenotype.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest. Wang X et al. (2018) Successful human reproduction initiates from normal gamete formation, fertilization and early embryonic development. Abnormalities in any of these steps will lead to infertility. Many infertile patients undergo several failures of IVF and intracytoplasmic sperm injection (ICSI) cycles, and embryonic developmental arrest is a common phenotype in cases of recurrent failure of IVF/ICSI attempts. However, the genetic basis for this phenotype is poorly understood. The subcortical maternal complex (SCMC) genes play important roles during embryonic development, and using whole-exome sequencing novel biallelic mutations in the SCMC genes TLE6, PADI6 and KHDC3L were identified in four patients with embryonic developmental arrest. A mutation in TLE6 was found in a patient with cleaved embryos that arrested on day 3 and failed to form blastocysts. Two patients with embryos that arrested at the cleavage stage had mutations in PADI6, and a mutation in KHDC3L was found in a patient with embryos arrested at the morula stage. No mutations were identified in these genes in an additional 80 patients. These findings provide further evidence for the important roles of TLE6, PADI6 and KHDC3L in embryonic development. This work lays the foundation for the genetic diagnosis of patients with recurrent IVF/ICSI failure.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: A novel TLE6 mutation, c.541+1G>A, identified using whole-exome sequencing in a Chinese family with female infertility. Mao B et al. (2021) Oocytes have a lot of maternal RNAs and proteins, which are used by the early embryo before zygotic genome activation. Transducin-like enhancer of split 6 (TLE6) is a component of a subcortical maternal complex which plays a critical role in early embryonic development. The patient had been diagnosed with primary infertility for 6 years and had undergone multiple failed in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. Genomic DNA samples were extracted from her parents' peripheral blood as well as hers. Whole-exome sequencing and Sanger validation were performed to identify candidate variants. We identified a novel transducin-like enhancer of split 6 (TLE6) gene mutations in the female patient with recurrent IVF/ICSI failure. The patient carried a homozygous mutation (NM_001143986.1(TLE6): c.541+1G>A) and had viable but low-quality embryos. Her parents both had heterozygous mutations at this locus. Our study expands the mutational and phenotypic spectrum of TLE6 and suggests the important role of TLE6 during embryonic development. Our findings have implications for the genetic diagnosis of female infertility with recurrent IVF/ICSI failure.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 15, 2008, 12:05 p.m. by: hsueh   email:
home page:
last update: July 21, 2021, 3:08 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form