NCBI Summary:
This gene encodes a member of the paraneoplastic Ma antigen protein family. These proteins have been implicated in the development of paraneoplastic disorders resulting from an immune response directed against them. Paraneoplastic disorders are the result of an abnormal immune response to a tumor. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Oct 2011]
General function
Comment
Cellular localization
Comment
Ovarian function
Oocyte maturation
Comment
Pnma5 is essential to the progression of meiosis in mouse oocytes through a chain of phosphorylation. Zhang XL et al. (2017) PNMA (paraneoplastic antigen MA) family includes Pnma1-6. Although other members have been found to be involved in paraneoplastic neurological disorders, death receptor-dependent apoptosis, and tumorigenesis, Pnma5 was thought to be a female fertility factor, as indicated by one genome-wide study. But until now there have not been any further functional studies about Pnma5 in female meiosis. Our preliminary study indicated that Pnma5 might play important roles in meiosis. To further address this, Pnma5 was knocked down in in-vitro maturated (IVM) mouse oocytes, which are common models for mammalian female meiosis, by specific siRNA, and results showed that the loss of Pnma5 significantly delayed the progression of meiosis I and increased chromosome segregation errors during anaphase I. In in-vitro fertilization (IVF), Pnma5 knockdown caused significantly lower fertilization. To assess how it affects meiosis, Pnma5 knockdown was found to significantly decrease the stability of spindle microtubules and altered F-actin organization within actin cap regions, cause significantly abnormal mitochondria aggregation and lower ATP concentration. Next we have found that phosphorylation at Thr533 re-located Pnma5 strongly to spindles & cortex and was required for the phosphorylation of Akt and Gsk3β, while Src and Erk1/2 phosphorylation was required for the phosphorylation of Pnma5, indicating that phosphorylated Pnma5 is the active form and subsequently activates Akt and Gsk3β. Collectively this study suggests that Pnma5 is important for meiosis and is the pivot of Src→Erk1/2→Pnma5→Akt→Gsk3β pathway.//////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Gallardo TD et al. Female infertility syndromes are among the most prevalent chronic health disorders in women, but their genetic basis remains unknown because of uncertainty regarding the number and identity of ovarian factors controlling the assembly, preservation, and maturation of ovarian follicles. To systematically discover ovarian fertility genes en masse, we employed a mouse model (Foxo3) in which follicles are assembled normally but then undergo synchronous activation. We developed a microarray-based approach for the systematic discovery of tissue-specific genes and, by applying it to Foxo3 ovaries and other samples, defined a surprisingly large set of ovarian factors (n = 348, approximately 1% of the mouse genome). This set included the vast majority of known ovarian factors, 44% of which when mutated produce female sterility phenotypes, but most were novel. Comparative profiling of other tissues, including microdissected oocytes and somatic cells, revealed distinct gene classes and provided new insights into oogenesis and ovarian function, demonstrating the utility of our approach for tissue-specific gene discovery. This study will thus facilitate comprehensive analyses of follicle development, ovarian function, and female infertility. This is an oocyte-specific gene.