Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

sprouty homolog 4 (Drosophila) OKDB#: 3941
 Symbols: SPRY4 Species: human
 Synonyms:  Locus: 5q31.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Fürthauer M et al. (2001) In looking for novel factors involved in the regulation of the fibroblast growth factor (FGF) signaling pathway, we have isolated a zebrafish sprouty4 gene, based on its extensive similarities with the expression patterns of both fgf8 and fgf3. Through gain- and loss-of-function experiments, we demonstrate that Fgf8 and Fgf3 act in vivo to induce the expression of Spry4, which in turn can inhibit activity of these growth factors. When overexpressed at low doses, Spry4 induces loss of cerebellum and reduction in size of the otic vesicle, thereby mimicking the fgf8/acerebellar mutant phenotype. Injections of high doses of Spry4 cause ventralization of the embryo, an opposite phenotype to the dorsalisation induced by overexpression of Fgf8 or Fgf3. Conversely we have shown that inhibition of Spry4 function through injection of antisense morpholino oligonucleotide leads to a weak dorsalization of the embryo, the phenotype expected for an upregulation of Fgf8 or Fgf3 signaling pathway. Finally, we show that Spry4 interferes with FGF signaling downstream of the FGF receptor 1 (FGFR1). In addition, our analysis reveals that signaling through FGFR1/Ras/mitogen-activated protein kinase pathway is involved, not in mesoderm induction, but in the control of the dorsoventral patterning via the regulation of bone morphogenetic protein (BMP) expression.//////////////////

General function Intracellular signaling cascade
Comment
Cellular localization Cytoplasmic, Plasma membrane
Comment
Ovarian function Oocyte maturation
Comment
Expression regulated by LH, Growth Factors/ cytokines
Comment Fibroblast growth factor-2 regulation of sprouty and NR4A genes in bovine ovarian granulosa cells. Jiang Z et al. Fibroblast growth factors (FGFs) alter ovarian function, at least in part by inhibiting steroid hormone secretion and affecting survival of granulosa cells. The mechanism of action of FGFs in ovarian follicle cells is largely unknown; in the present study we identified the major pathways used by FGF2 in nonluteinizing granulosa cells cultured under serum-free conditions. FGF2 increased abundance of mRNA encoding SPRY1, 2 and 4, but not SPRY3. Common pathways employed by FGF2 in the regulation of SPRY1, 2 and 4, as demonstrated by immunoblot and inhibitor studies, included ERK1/2 and Akt signaling. In contrast, PKC activation was necessary for FGF2-stimulated expression of SPRY1 and 4, but not for SPRY2. Intracellular calcium flux is critical and sufficient for SPRY2 expression, but not for SPRY1 and 4. We also identified the orphan nuclear receptor NR4A1 as a potential early response gene in FGF2 signaling, whose expression, like that of SPRY2, is critically dependent on calcium signaling. Together, these data identify FGF2-target genes in follicular granulosa cells, and demonstrate alternative pathway use for the differential control of SPRY genes. J. Cell. Physiol. ? 2010 Wiley-Liss, Inc.
Ovarian localization Oocyte, Cumulus, Granulosa
Comment Fibroblast growth factor-2 regulation of sprouty and NR4A genes in bovine ovarian granulosa cells. Jiang ZL et al. Fibroblast growth factors (FGFs) alter ovarian function, at least in part by inhibiting steroid hormone secretion and affecting survival of granulosa cells. The mechanism of action of FGFs in ovarian follicle cells is largely unknown; in the present study we identified the major pathways used by FGF2 in non-luteinizing granulosa cells cultured under serum-free conditions. FGF2 increased abundance of mRNA encoding SPRY1, 2, and 4, but not SPRY3. Common pathways employed by FGF2 in the regulation of SPRY1, 2, and 4, as demonstrated by immunoblot and inhibitor studies, included ERK1/2 and Akt signaling. In contrast, PKC activation was necessary for FGF2-stimulated expression of SPRY1 and 4, but not for SPRY2. Intracellular calcium flux is critical and sufficient for SPRY2 expression, but not for SPRY1 and 4. We also identified the orphan nuclear receptor NR4A1 as a potential early response gene in FGF2 signaling, whose expression, like that of SPRY2, is critically dependent on calcium signaling. Together, these data identify FGF2-target genes in follicular granulosa cells, and demonstrate alternative pathway use for the differential control of SPRY genes. J. Cell. Physiol. 226: 1820-1827, 2011. ? 2010 Wiley-Liss, Inc. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Adriaenssens T et al. BACKGROUND Gene expression of cumulus cells (CC) could predict oocyte developmental quality. Knowledge of the genes involved in determining oocyte quality is scanty. The aim was to correlate clinical and biological characteristics during ovarian stimulation with the expression of 10 selected genes in CC. METHODS Sixty-three ICSI patients were stimulated with GnRH-agonist plus highly purified hMG (n = 35) or recombinant FSH (n = 28). Thirteen variables were analyzed: Age, BMI, duration of stimulation, serum concentrations of progesterone, 17beta-estradiol, FSH and LH on day of hCG, Ovarian Response, Oocyte Maturity, 2 pronuclei and three embryo morphology related variables: >/=7 cells, Low Fragmentation, Good Quality Embryos score. Expression of HAS2, VCAN, SDC4, ALCAM, GREM1, PTGS1, PTGS2, DUSP16, SPROUTY4 and RPS6KA2 was analyzed in pooled CC using quantitative PCR, and the relationship to the 13 variables was evaluated by multivariable analysis. RESULTS All 10 genes are expressed at oocyte retrieval, with PTGS1, SPROUTY4, DUSP16 and RPS6KA2 described in human ovary for the first time. The three variables that correlated most often with differential expression were Age, BMI and serum FSH level. Significant correlation was found with Oocyte Maturity (VCAN, P < 0.005), Low Fragmentation (RPS6KA2, P < 0.05), Embryos with >/=7 cells (ALCAM and GREM1, P < 0.05). The expression of the other genes was also correlated to oocyte developmental quality but to a less extent. SDC4, VCAN, GREM1, SPROUTY4 and RPS6KA2 showed gonadotrophin preparation-dependent expression and/or interactions (all P < 0.05). CONCLUSION The expression of ovulation related genes in CC is associated with patient and treatment characteristics, oocyte developmental potential and differs with the type of gonadotrophin used. Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Gallardo TD et al. Female infertility syndromes are among the most prevalent chronic health disorders in women, but their genetic basis remains unknown because of uncertainty regarding the number and identity of ovarian factors controlling the assembly, preservation, and maturation of ovarian follicles. To systematically discover ovarian fertility genes en masse, we employed a mouse model (Foxo3) in which follicles are assembled normally but then undergo synchronous activation. We developed a microarray-based approach for the systematic discovery of tissue-specific genes and, by applying it to Foxo3 ovaries and other samples, defined a surprisingly large set of ovarian factors (n = 348, approximately 1% of the mouse genome). This set included the vast majority of known ovarian factors, 44% of which when mutated produce female sterility phenotypes, but most were novel. Comparative profiling of other tissues, including microdissected oocytes and somatic cells, revealed distinct gene classes and provided new insights into oogenesis and ovarian function, demonstrating the utility of our approach for tissue-specific gene discovery. This study will thus facilitate comprehensive analyses of follicle development, ovarian function, and female infertility. This is an oocyte-specific gene.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: unknown
Comment: Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. Taniguchi K et al. Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Jan. 29, 2009, 10:25 a.m. by: hsueh   email:
home page:
last update: Jan. 22, 2015, 1:34 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form