The canonical eIF4E isoform of C. elegans regulates growth, embryogenesis, and germline sex-determination. Mangio RS et al. (2015) eIF4E plays a conserved role in initiating protein synthesis, but with multiple eIF4E isoforms present in many organisms, these proteins also adopt specialized functions. Previous RNAi studies showed that ife-3, encoding the sole canonical eIF4E isoform of Caenorhabditis elegans, is essential for viability. Using ife-3 gene mutations, we show here that it is maternal ife-3 function that is essential for embryogenesis, but ife-3 null progeny of heterozygous animals are viable. We find that zygotic ife-3 function promotes body growth and regulates germline development in hermaphrodite worms. Specifically, the normal transition from spermatogenesis to oogenesis in the hermaphrodite germline fails in ife-3 mutants. This failure to switch is reversed by inhibiting expression of the key masculinizing gene, fem-3, suggesting ife-3 resembles a growing number of genes that promote the sperm/oocyte switch by acting genetically as upstream inhibitors of fem-3.//////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. Henderson MA et al. Fertility and embryonic viability are measures of efficient germ cell growth and development. During oogenesis and spermatogenesis, new proteins are required for both mitotic expansion and differentiation. Qualitative and quantitative changes in protein synthesis occur by translational control of mRNAs, mediated in part by eIF4E, which binds the mRNAs 5' cap. IFE-1 is one of five eIF4E isoforms identified in C. elegans. IFE-1 is expressed primarily in the germ line and associates with P granules, large mRNPs that store mRNAs. We isolated a strain that lacks IFE-1 [ife-1(bn127)] and demonstrated that the translation of several maternal mRNAs (pos-1, pal-1, mex-1 and oma-1) was inefficient relative to that in wild-type worms. At 25 degrees C, ife-1(bn127) spermatocytes failed in cytokinesis, prematurely expressed the pro-apoptotic protein CED-4/Apaf-1, and accumulated as multinucleate cells unable to mature to spermatids. A modest defect in oocyte development was also observed. Oocytes progressed normally through mitosis and meiosis, but subsequent production of competent oocytes became limiting, even in the presence of wild-type sperm. Combined gametogenesis defects decreased worm fertility by 80% at 20 degrees C; ife-1 worms were completely sterile at 25 degrees C. Thus, IFE-1 plays independent roles in late oogenesis and spermatogenesis through selective translation of germline-specific mRNAs.