Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

WEE2 oocyte meiosis inhibiting kinase OKDB#: 4105
 Symbols: WEE2 Species: human
 Synonyms: OOMD5, WEE1B  Locus: 7q34 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Prophase I arrest and progression to metaphase I in mouse oocytes: Comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Solc P et al. Mammalian oocytes are arrested at prophase I until puberty when luteinizing hormone (LH) induces resumption of meiosis of follicle-enclosed oocytes. Resumption of meiosis is tightly coupled with regulating cyclin dependant kinase 1 (CDK1) activity. Prophase I arrest depends on inhibitory phosphorylation of CDK1 and anaphase-promoting complex - (APC-CDH1)-mediated regulation of cyclin B levels. Prophase I arrest is maintained by endogenously produced cAMP, which activates protein kinase A (PKA) that in turn phosphorylates (and activates) the nuclear kinase WEE2. In addition, PKA-mediated phosphorylation of the phosphatase CDC25B results in its cytoplasmic retention. The combined effect maintains low levels of CDK1 activity that are not sufficient to initiate resumption of meiosis. LH triggers synthesis of epidermal growth factor (EGF)-like factors in mural granulosa cells and leads to reduced cGMP transfer from cumulus cells to oocytes via gap junctions that couple the two cell types. cGMP inhibits oocyte phosphodiesterase 3A (PDE3A) and a decline in oocyte cGMP results in increased PDE3A activity. The ensuing decrease in oocyte cAMP triggers maturation by alleviating the aforementioned phosphorylations of WEE2 and CDC25B. As a direct consequence CDC25B translocates into the nucleus. The resulting activation of CDK1 also promotes extrusion of WEE2 from the nucleus thereby providing a positive amplification mechanism for CDK1 activation. Other kinases, e.g., protein kinase B (PKB), Aurora kinase A (AURKA) and polo-like kinase 1 (PLK1), also participate in resumption of meiosis. Mechanisms governing meiotic prophase I arrest and resumption of meiosis share common features with DNA damage-induced mitotic G2 checkpoint arrest and checkpoint recovery, respectively. These common features include CDC14B-dependent activation of APC-CDH1 in prophase I arrested oocytes or G2 arrested somatic cells, and CDC25B-dependent cell cycle resumption in both oocytes and somatic cells.

General function Cell cycle regulation
Comment Development of WEE2 kinase inhibitors as novel non-hormonal female contraceptives that target meiosis†. Hanna CB et al. (2020) WEE2 oocyte meiosis inhibiting kinase is a well-conserved oocyte specific kinase with a dual regulatory role during meiosis. Active WEE2 maintains immature, germinal vesicle stage oocytes in prophase I arrest prior to the luteinizing hormone surge and facilitates exit from metaphase II arrest at fertilization. Spontaneous mutations at the WEE2 gene locus in women have been linked to total fertilization failure indicating that selective inhibitors to this kinase could function as non-hormonal contraceptives. Employing co-crystallization with WEE1 G2 checkpoint kinase inhibitors, we revealed the structural basis of action across WEE kinases and determined type I inhibitors were not selective to WEE2 over WEE1. In response, we performed in silico screening by FTMap/FTSite and Schrodinger SiteMap analysis to identify potential allosteric sites, then used an allosterically biased activity assay to conduct high-throughput screening of a 26 000 compound library containing scaffolds of known allosteric inhibitors. Resulting hits were validated and a selective inhibitor that binds full-length WEE2 was identified, designated GPHR-00336382, along with a fragment-like inhibitor that binds the kinase domain, GPHR-00355672. Additionally, we present an in vitro testing workflow to evaluate biological activity of candidate WEE2 inhibitors including; (1) enzyme-linked immunosorbent assays measuring WEE2 phosphorylation activity of cyclin dependent kinase 1 (CDK1; also known as cell division cycle 2 kinase, CDC2), (2) in vitro fertilization of bovine ova to determine inhibition of metaphase II exit, and (3) cell-proliferation assays to look for off-target effects against WEE1 in somatic (mitotic) cells.//////////////////
Cellular localization Nuclear
Comment Analyses of the Regulatory Mechanism of Porcine WEE1B: The Phosphorylation Sites of Porcine WEE1B and Mouse WEE1B are Different. Shimaoka T et al. WEE1B, an oocyte-specific kinase, phosphorylates the CDC2 inhibitory site and maintains the meiotic arrest of oocytes at the first meiotic prophase in several mammalian species. However, the molecular mechanisms controlling WEE1B activity have not been fully examined in species other than mice. In the present study, we analyzed the regulation mechanisms of porcine WEE1B (pWEE1B), focusing on the cAMP-dependent protein kinase (PKA) phosphorylation site and intracellular localization. As the PKA phosphorylation site in mouse WEE1B (mWEE1B) was not conserved in pWEE1B, we predicted that four serine residues would be phosphorylatable by PKA in pWEE1B (Ser77, Ser118, Ser133 and Ser149) and constructed FLAG-tagged replaced-pWEE1Bs, in which each of the PKA-phosphorylatable serines was mutated into a non-phosphorylatable alanine. We injected one of their mRNAs into porcine immature oocytes and found that the Ser77-replaced pWEE1B lost the WEE1B function, whereas the wild-type and other replaced-pWEE1Bs could maintain the meiotic arrest of oocytes. Next, the localization of pWEE1B was examined by immunohistochemistry, and exclusive nuclear localization was revealed in the fully grown oocytes. We generated a nuclear localization signal (NLS)-deleted pWEE1B (?NLS-pWEE1B) and then overexpressed it in porcine immature oocytes. We found that ?NLS-pWEE1B was distributed uniformly in the cytoplasm and could not maintain the meiotic arrest of porcine oocytes. These results suggest that pWEE1B is activated after phosphorylation of the Ser77 residue, which is different from the phosphorylation site that activates mWEE1B; that pWEE1B is localized in the nucleus; and that the nuclear localization is essential for its function.
Ovarian function Oocyte maturation, Early embryo development
Comment Wee1B depletion promotes nuclear maturation of canine oocytes. Kim YG et al. (2014) Most mammalian oocytes are arrested at the germinal vesicle stage by activation of Wee1B. Meiotic resumption is regulated by inactivation of Wee1B and activation of cell division cycle 25B. The aim of this study was to determine whether treatment with Wee1B-targeting small interfering RNA (Wee1B-siRNA) promotes nuclear maturation of canine oocytes from germinal vesicle stage to metaphase II (MII) stage. In experiment 1, the percentage of canine oocytes that matured to MII stage was higher (P < 0.05) among oocytes cultured in vitro for 72 hours than among those cultured for 24 and 48 hours (5.4 ± 2.5% vs. 0.0 ± 0.0% and 1.4 ± 1.0%, respectively). Furthermore, the percentage of oocytes that matured to metaphase I (MI) stage was higher (P < 0.05) among oocytes cultured for 48 and 72 hours than among those cultured for 24 hours (14.9 ± 10.0% and 22.4 ± 8.1%, respectively, vs. 5.7 ± 6.0%). In experiment 2, canine oocytes were intracytoplasmically microinjected with Wee1B-siRNA (50 μM) at various culture time points (0, 24, 48, or 72 hours). The nuclear configuration of the exception of oocytes in the 72-hour group was examined after 84 hours of culture. The percentage of oocytes that matured to the MII stage was higher (P < 0.05) among those treated with Wee1B-siRNA at 0 hours than among control oocytes and those injected at 72 hours (18.0 ± 1.7% vs. 2.1 ± 2.8% and 0.0 ± 0.0%, respectively). Moreover, the percentage of oocytes that matured to the MI stage was higher (P < 0.05) among those injected at 0 hours than among control oocytes and those injected at 24 and 72 hours (45.9 ± 6.8% vs. 22.1 ± 3.5%, 22.8 ± 10.0%, and 10.0 ± 4.4%, respectively). In experiment 3, oocytes were intracytoplasmically microinjected with Wee1B-siRNA at 0 hours of IVM and cultured for 0, 24, 48, or 72 hours. Thereafter, maturation-related gene expression was analyzed by quantitative real-time polymerase chain reaction. Messenger RNA expression of cAMP and cell division cycle 25B was lower (P < 0.05) in oocytes injected at 48 hours than in the other groups. Messenger RNA expression of cAMP was lower (P < 0.05) in oocytes injected at 0 hours than in control oocytes and those injected at 72 hours. Messenger RNA expression of mitogen-activated protein kinase 1 and mitogen-activated protein kinase 3 was higher (P < 0.05) in oocytes injected at 72 hours than in the other groups. In conclusion, we confirmed that Wee1B-siRNA microinjection enhances the percentages of canine oocytes that reach the MI and MII stages. These data suggest that Wee1B-siRNA microinjection could be a useful strategy to obtain mature canine oocytes for research and assisted canine reproduction.////////////////// Protein Tyrosine Kinase Wee1B is Essential for Metaphase II Exit in Mouse Oocytes. Oh JS et al. Waves of cyclin synthesis and degradation regulate the activity of Cdc2 protein kinase during the cell cycle. Cdc2 inactivation by Wee1B-mediated phosphorylation is necessary for arrest of the oocyte at G2-prophase, but it is unclear whether this regulation functions later during the metaphase to anaphase transition. We show that reactivation of a Wee1B pathway triggers the decrease in Cdc2 activity during egg activation. When Wee1B is downregulated, oocytes fail to form a pronucleus in response to Ca(2+) signals. Calcium-calmodulin-dependent kinase II (CaMKII) activates Wee1B, and CaMKII-driven exit from metaphase II (MII) is inhibited by Wee1B downregulation, demonstrating that exit from metaphase requires not only a proteolytic degradation of cyclin B, but also the inhibitory phosphorylation of Cdc2 by Wee1B. WEE2 Is an Oocyte-Specific Meiosis Inhibitor in Rhesus Macaque Monkeys. Hanna CB et al. WEE1 homolog 2 (WEE2, also known as WEE1B) is a newly identified member of the WEE kinase family that is conserved from yeast to humans. The aim of the study is to determine the spatiotemporal expression pattern and the function of WEE2 during oocyte maturation in a nonhuman primate species, the rhesus macaque. Among 11 macaque tissues examined, WEE2 transcript is predominantly expressed in the ovary, only weakly detectable in the testis. Within the ovary, WEE2 mRNA is exclusively localized in the oocyte and appears to accumulate during folliculogenesis, reaching the highest level in preovulatory follicles. Microinjeciton of a full-length WEE2-GFP (green fluorescent protein) fusion mRNA indicates a specific nuclear localization of WEE2 protein in both growing and fully-grown germinal vesicle (GV)-intact oocytes. Taking the long double stranded (ds) RNA-mediated RNA interference (RNAi) approach, we found that down-regulation of WEE2 led to meiotic resumption in a subset of GV oocytes even in the presence of a phosphodiesterase 3 (PDE3) inhibitor. On the other hand, overexpression of WEE2 delays the reentry of oocytes into meiosis in both mice and monkeys. These findings suggest that WEE2 is a conserved oocyte-specific meiosis inhibitor that functions downstream of cyclic Adenosine MonoPhosphate (cAMP) in nonhuman primates. Critical effect of pigWee1B on the regulation of meiotic resumption in porcine immature oocytes. Shimaoka T et al. Porcine immature oocytes require protein synthesis for meiotic resumption, thus the importance of Cdc2 inhibitory phosphorylation in their meiotic arrest remains controversial. We examined the involvement of Cdc2 phosphorylation in the meiotic arrest of porcine oocytes with a special focus on Wee1B, an oocyte-specific Wee1 family member recently reported in mouse oocytes. We cloned a Wee1B homologue of pig by RT-PCR followed by 5'- and 3'-RACE. Overexpression of pigWee1B in porcine immature oocytes by the injection of pigWee1B mRNA almost completely blocked the germinal vesicle breakdown (GVBD) under the low cAMP concentration, which could not block their spontaneous meiotic resumption by itself. The MPF activation and cyclin B synthesis were inhibited in these oocytes. Conversely, downregulation of pigWee1B expression by the injection of specific antisense mRNA induced GVBD in the oocytes, the spontaneous meiotic resumption of which was blocked by the high concentration of cAMP (dbcAMP). In these oocytes, the MPF activity was elevated and cyclin B was accumulated. Downregulation of pigMyt1, another Wee1 family member, could not induce the GVBD under the same condition. The inhibition of tyrosine phosphatase by vanadate blocked the GVBD even in the pigWee1B-downregulated oocytes. These results suggest that the inhibitory phosphorylation of CDC2, which is catalyzed by pigWee1B, but not pigMyt1, is involved in the meiotic arrest of porcine oocytes, and that the inactivation of Wee1B in combination with the phosphatase activation induces the conversion of pre-MPF to the active MPF and starts the cyclin B synthesis, follwed by a further increase of MPF and meiotic resumption. Nakanishi M, et al 2000 reported the identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. In eukaryotic cells, the kinase activity of the mitosis-promoting complex composed of cyclin B and Cdc2 (Cdk1) is negatively regulated by the phosphorylation of Cdk1 on threonine or tyrosine residues within its ATP binding domain. Northern blot analysis revealed that human Wee1B mRNA is particularly abundant in testis. Interestingly, RT-PCR using early embryos revealed that the Wee1B product was readily detectable at the mature oocyte, but abruptly disappeared at embryonic day 2.5, suggesting that the amount of Wee1B mRNA is dependent on the maternal expression. GFP-Wee1B showed a predominantly nuclear localization in HeLa cells. Human Wee1B was able to rescue the lethal phenotype of the fission yeast wee1-50 Delta mik1 mutant, and over-expression of the human protein in these cells resulted in cell elongation as a result of arrest of the cell cycle at the G(2)-M transition. Recombinant Wee1B effectively phosphorylated cyclin B-associated Cdk1 on tyrosine-15, resulting in an inactivation of the kinase activity of Cdk1. Expression of wee1 and its related cell cycle components in mouse early stage follicles. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. Oh JS et al. After a long period of quiescence at dictyate prophase I, termed the germinal vesicle (GV) stage, mammalian oocytes reenter meiosis by activating the Cdc2-cyclin B complex (maturation-promoting factor [MPF]). The activity of MPF is regulated by Wee1/Myt1 kinases and Cdc25 phosphatases. In this study, we demonstrate that the sequestration of components that regulate MPF activity in distinct subcellular compartments is essential for their function during meiosis. Down-regulation of either Wee1B or Myt1 causes partial meiotic resumption, and oocytes reenter the cell cycle only when both proteins are down-regulated. Shortly before GV breakdown (GVBD), Cdc25B is translocated from the cytoplasm to the nucleus, whereas Wee1B is exported from the nucleus to the cytoplasm. These movements are regulated by PKA inactivation and MPF activation, respectively. Mislocalized Wee1B or Myt1 is not able to maintain meiotic arrest. Thus, cooperation of Wee1B, Myt1, and Cdc25 is required to maintain meiotic arrest and relocation of these components before GVBD is necessary for meiotic reentry.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse Han SJ, et al . In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA) play a critical role in maintaining an inactive Cdc2 , the steps downstream of PKA in the oocyte remain unknown. Using a small-pool expression-screening strategy, we have isolated several putative PKA substrates from a mouse oocyte cDNA library. One of these clones encodes a Wee1-like kinase that prevents progesterone-induced oocyte maturation when expressed in Xenopus oocytes. Unlike the widely expressed Wee1 and Myt1, mWee1B mRNA and its protein are expressed only in oocytes, and mRNA downregulation by RNAi injection in vitro or transgenic overexpression of RNAi in vivo causes a leaky meiotic arrest. Ser15 residue of mWee1B is the major PKA phosphorylation site in vitro, and the inhibitory effects of the kinase are enhanced when this residue is phosphorylated. Thus, mWee1B is a key MPF inhibitory kinase in mouse oocytes, functions downstream of PKA, and is required for maintaining meiotic arrest. Insufficient Amount of Cdc2 and Continuous Activation of Wee1 B Are the Cause of Meiotic Failure in Porcine Growing Oocytes. Nishimura T et al. In mammals, growing oocytes with a diameter less than 80% of that of full-grown oocytes cannot start meiotic maturation, and their maturation promoting factor (MPF) cannot be activated by hormonal stimulation or isolation from follicles. The aim of the present study was to identify the key molecules responsible for meiotic failure of these growing oocytes (referred to as 'small oocytes' in the present study). To this end, we altered the expression of the molecules involved in MPF activation in the small oocytes of pigs by injecting them with mRNA or antisense RNA (asRNA) and examined the effects on the meiotic ability of the small oocytes. Immunoblotting analyses revealed three defects in small oocytes compared with full-grown oocytes, an inactive mitogen activated protein kinase (MAPK) cascade, a failure of cyclin B synthesis and an insufficient amount of Cdc2. Injection with mRNAs of Mos, the uppermost molecule of the MAPK cascade, cyclin B1, cyclin B2 or Cdc2 into small porcine oocytes indicated directly and for the first time that the cause of meiotic failure of porcine small oocytes is an insufficient amount of Cdc2 rather than MAPK inactivation or failure of cyclin B synthesis. Next, in order to suppress Myt1 and Wee1B, which phosphorylates at inhibitory phosphorylation sites of Cdc2 and inactive MPF, we injected their asRNAs into the porcine small oocytes and found that the Wee1B asRNA significantly increased meiotic ability, whereas the Myt1 asRNA had no effect. When Cdc2 overexpression and suppression of Wee1B expression were simultaneously induced in the small oocytes of pigs, about 70% of the small oocytes resumed meiosis, and this rate was nearly comparable with that of the full-grown oocytes. These results strongly suggest that an insufficient amount of Cdc2 and continuous activation of Wee1 B are the cause of meiotic failure of small oocytes in pigs.
Follicle stages
Comment
Phenotypes
Mutations 5 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility. Sang Q et al. (2018) Fertilization is a fundamental process of development and is a prerequisite for successful human reproduction. In mice, although several receptor proteins have been shown to play important roles in the process of fertilization, only three genes have been shown to cause fertilization failure and infertility when deleted in vivo. In clinical practice, some infertility case subjects suffer from recurrent failure of in vitro fertilization and intracytoplasmic sperm injection attempts due to fertilization failure, but the genetic basis of fertilization failure in humans remains largely unknown. Wee2 is a key oocyte-specific kinase involved in the control of meiotic arrest in mice, but WEE2 has not been associated with any diseases in humans. In this study, we identified homozygous mutations in WEE2 that are responsible for fertilization failure in humans. All four independent affected individuals had homozygous loss-of-function missense mutations or homozygous frameshift protein-truncating mutations, and the phenotype of fertilization failure was shown to follow a Mendelian recessive inheritance pattern. All four mutations significantly decreased the amount of WEE2 protein in vitro and in affected individuals' oocytes in vivo, and they all led to abnormal serine phosphorylation of WEE2 and reduced tyrosine 15 phosphorylation of Cdc2 in vitro. In addition, injection of WEE2 cRNA into affected individuals' oocytes rescued the fertilization failure phenotype and led to the formation of blastocysts in vitro. This work presents a novel gene responsible for human fertilization failure and has implications for future therapeutic treatments for infertility cases.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel mutations in WEE2: expanding the spectrum of mutations responsible for human fertilization failure. Zhang Z et al. (2019) Successful fertilization is fundamental for sexual reproduction. After undergoing a series of molecular and morphological changes, the haploid sperm fuses with the haploid oocyte to create a diploid zygote. Defects in this process might lead to human fertilization failure. We have previously found homozygous mutations in WEE2 that are responsible for human fertilization failure, but the genetic basis of human fertilization failure requires further investigation. In this study, we screened for WEE2 mutations in a new cohort of patients with fertilization failure. Through Sanger sequencing of WEE2 exons, we identified seven novel mutations and two reported mutations in WEE2 from six affected individuals. Morphologically normal PB1 oocytes can be retrieved from all patients. However, most of the oocytes cannot be fertilized successfully. These findings confirmed our previous research and expanded the mutational spectrum of WEE2, making it a potential genetic diagnostic marker for those suffering from human fertilization failure. This article is protected by copyright. All rights reserved.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. Yang X et al. (2019) To investigate a novel mutation in the WEE2 gene in a female patient with primary infertility and fertilization failure. Sanger sequencing was used to detect mutations in WEE2. The pathogenicity of the identified variant and its possible effects on the WEE2 protein were evaluated with in silico tools and molecular modeling. We used the calcium ionophore A23187 as a chemical activator of oocytes after intracytoplasmic sperm injection (ICSI). We identified a consanguineous family with a novel homozygous missense mutation in WEE2 (c.619C>T [p.R207C]). Based on preliminary bioinformatics analysis, we speculate that the novel homozygous missense mutation is pathogenic. ICSI combined with assisted oocyte activation (ICSI-AOA) did not overcome fertilization failure in this patient with WEE2 mutation. We identified a novel mutation in WEE2 (c.619C>T [p.R207C]) in a female patient with fertilization failure after ICSI, and we provide evidence that this novel homozygous missense mutation can cause fertilization failure.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel compound heterozygous mutations in WEE2 causes female infertility and fertilization failure. Zhou X et al. (2019) To identify the disease-causing gene in a family with female infertility and fertilization failure. Whole-exome sequencing and Sanger sequencing were used to identify the disease-causing gene in a female with infertility and fertilization failure. Subcellular localization and western blot analysis were used to check the effect of mutations. We identified novel compound heterozygous mutations c.598C>T (p.Arg200Ter) and c.1319G>C (p.Trp440Ser) in WEE2 gene in a female with infertility and fertilization failure. The p.Arg200Ter mutant WEE2 gene produce truncated protein and mainly located in the nucleus, the same as the wild protein, while the p.Trp440Ser mutant WEE2 proteins are located in the nucleus and cytoplasm and the expression level of p.Trp440Ser mutant WEE2 protein is reduced significantly compared with that of wild-type WEE2. We discovered novel compound heterozygous mutations c.598C>T (p.Arg200Ter) and c.1319G>C (p.Trp440Ser) in WEE2 gene in a female whose oocytes could not form pronucleus after intracytoplasmic sperm injection (ICSI). Moreover, mutations in WEE2 gene affect the normal function of WEE2 proteins and cause fertilization failure.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel compound heterozygous mutation in WEE2 is associated with fertilization failure: case report of an infertile woman and literature review. Tian Y et al. (2020) Fertilization failure after intracytoplasmic sperm injection continues to affect couples and the etiology is not well-understood. We characterized a couple with 2-year history of primary unexplained infertility. Three different assisted reproduction attempts (IVF + rescue ICSI, ICSI and ICSI-AOA) showed repeated fertilization failure for MII oocyte retrieval after controlled ovarian hyperstimulation. After whole-exome sequencing and sanger sequencing of the couple and their family members, variant pathogenicity was assessed using SIFT, PolyPhen2, Mutation Taster, and Human Splicing Finder software. We identified novel compound heterozygous mutations, c.1535 + 3A > G and c.946C > T (p. Leu316Phe), in WEE2 in the female proband. Trios analysis of the variations revealed an autosomal recessive pattern. c.1535 + 3A > G in WEE2 was predicted to break the wild-type donor site and affect splicing, and the missense mutation c.946C > T (p. Leu316Phe) of WEE2 was predicted to be pathogenic. A novel compound heterozygous mutation in WEE2 was identified in an infertile female who experienced repeated fertilization failure even after ICSI-AOA. These novel mutations in WEE2 provided genetic evidence for fertilization failure.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 1, 2009, 12:24 p.m. by: hsueh   email:
home page:
last update: Nov. 11, 2020, 9:45 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form