NCBI Summary:
This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This endoplasmic reticulum membrane protein catalyzes the first reaction in the cholesterol catabolic pathway in the liver, which converts cholesterol to bile acids. This reaction is the rate limiting step and the major site of regulation of bile acid synthesis, which is the primary mechanism for the removal of cholesterol from the body. [provided by RefSeq]
General function
Enzyme
Comment
Cellular localization
Cytoplasmic
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte, Granulosa
Comment
The bile acid synthesis pathway is present and functional in the human ovary. Smith LP et al. BACKGROUND: Bile acids, end products of the pathway for cholesterol elimination, are required for dietary lipid and fat-soluble vitamin absorption and maintain the balance between cholesterol synthesis in the liver and cholesterol excretion. They are composed of a steroid structure and are primarily made in the liver by the oxidation of cholesterol. Cholesterol is also highly abundant in the human ovarian follicle, where it is used in the formation of the sex steroids. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe for the first time evidence that all aspects of the bile acid synthesis pathway are present in the human ovarian follicle, including the enzymes in both the classical and alternative pathways, the nuclear receptors known to regulate the pathway, and the end product bile acids. Furthermore, we provide functional evidence that bile acids are produced by the human follicular granulosa cells in response to cholesterol presence in the culture media. CONCLUSIONS/SIGNIFICANCE: These findings establish a novel pathway present in the human ovarian follicle that has the capacity to compete directly with sex steroid synthesis.