NCBI Summary:
This gene encodes a muscle-specific class III intermediate filament. Homopolymers of this protein form a stable intracytoplasmic filamentous network connecting myofibrils to each other and to the plasma membrane. Mutations in this gene are associated with desmin-related myopathy, a familial cardiac and skeletal myopathy (CSM), and with distal myopathies. [provided by RefSeq]
General function
Cytoskeleton
Comment
Cellular localization
Cytoskeleton
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Comment
The Immunohistochemical Localization of Desmin and Smooth Muscle Actin in the Ovary of the African Giant Rat (Cricetomys gambianus) During the Oestrous Cycle. Madekurozwa MC et al. The aim of this study was to describe the distribution of smooth muscle actin and desmin immunopositive cells in the ovary of the giant rat. In addition, the study describes the morphological changes in the ovary of this species during the oestrous cycle. Healthy secondary and tertiary follicles dominated the ovary during pro-oestrus and oestrus. The theca externa of the tertiary follicles was immunopositive for smooth muscle actin, but immunonegative for desmin. Oestrus was also characterized by the presence of corpora haemorrhagica, which had an outer layer of smooth muscle actin immunopositive cells. Differentiating corpora lutea were observed during metoestrus. A further notable feature of the ovary during metoestrus was the presence of numerous atretic secondary and tertiary follicles. In the later stages of atresia, the follicles were infiltrated by desmin and smooth muscle actin immunopositive cells. Dioestrus was characterized by the presence of non-regressing and regressing corpora lutea. Immunostaining for smooth muscle actin was demonstrated in the enclosing layer of the corpora lutea, as well as in the tunica media of blood vessels within the corpora lutea. The results of this study have shown that morphological changes in the ovary of the giant rat during the oestrus cycle are similar to those of laboratory rodents. Furthermore, the results of the immunohistochemical study indicate that the perifollicular distribution of desmin and smooth muscle actin cells changes during follicular development and atresia.