Mutations |
2 mutations
Species: human
Mutation name: None
type: naturally occurring
fertility: subfertile
Comment: Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Bione S et al. BACKGROUND: Balanced X;autosome translocations interrupting the 'critical region' of the long arm of the human X chromosome are often associated with premature ovarian failure (POF). However, the mechanisms leading to X-linked ovarian dysfunction are largely unknown, as the majority of the X chromosome breakpoints have been mapped to gene-free genomic regions. A few genes have been found to be interrupted, but their role has never been clarified. METHODS AND RESULTS: By fine mapping of the X chromosome breakpoint of an X;autosome balanced translocation, we identified a new interrupted gene, POF1B. We performed a mutation analysis of POF1B and of another gene previously identified, DACH2, localized approximately 700 kb distal in Xq21, in a cohort of >200 Italian POF patients. Rare mutations were found in patients in both genes. CONCLUSIONS: Our findings could not demonstrate any involvement of POF1B, but suggest that rare mutations in the DACH2 gene may have a role in the POF phenotype.
Species: human
Mutation name: None
type: naturally occurring
fertility: subfertile
Comment: Most X;autosome translocations associated with premature ovarian failure do not interrupt X-linked genes. Prueitt RL et al. Balanced translocations with breakpoints in a critical region of the X chromosome, Xq13-->q26, are associated with premature ovarian failure (POF). Translocations may cause POF either by affecting expression of specific X-linked genes essential for maintenance of normal ovarian function or by a chromosomal effect such as inhibition of meiotic pairing or altered X inactivation. We previously mapped seven Xq translocation breakpoints associated with POF to approximately 75-kb intervals. One translocation disrupted an aminopeptidase gene, XPNPEP2. We have now refined the map location of the remaining six breakpoints with respect to known genes and transcription units predicted from the draft human genome sequence. Only one of the six breakpoints disrupts a gene, DACH2, the human ortholog of a mouse gene expressed in embryonic nervous tissue, sensory organs, and limbs. DACH2 has no obvious relationship to ovarian function. The other five breakpoints fall in apparently intragenic regions. Our results are most consistent with models for POF associated with X;autosome translocations that involve generalized chromosome effects.
|