Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

zygote arrest 1 like OKDB#: 4160
 Symbols: ZAR1L Species: human
 Synonyms: ZAR2, Z3CXXC7  Locus: 13q13.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a member of the ZAR1 family that is predominantly expressed in oocytes and early embryos. The protein may function as an RNA regulator in early embryos. [provided by RefSeq, Apr 2010]
General function Cell proliferation
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oocyte maturation, Early embryo development
Comment A putative protein structurally related to zygote arrest 1 (Zar1), Zar1-like, is encoded by a novel gene conserved in the vertebrate lineage. Sangiorgio L et al. Identification and characterization of a bovine cDNA and the corresponding gene coding for a novel protein structurally related to Zar1, therefore called Zar1-like, are here reported for the first time. Structure of Zar1-like is similar to Zar1 gene, nevertheless they are located on distinct chromosomes. We demonstrated that the new gene as well as its genomic context are conserved along the whole vertebrate lineage. Analysis of the deduced protein primary structure showed a high conservation, among vertebrates, of the C-terminal region, where the putative presence of both zinc finger motifs and classical nuclear localization signals is also shared with Zar1. Bovine Zar1-like and the only two other available mRNA leader sequences (human and chicken) exhibit a number of upstream AUGs, suggesting that they are likely to be regulated at translational level. Expression patterns of the cattle transcripts show that Zar1-like is absent in early stages of embryo development, whereas Zar1 is expressed in matured oocytes and in in vitro produced pre-implantation embryos. In adult tissues Zar1-like transcript expression appears to be less restricted than Zar1, nevertheless, at least in bovine, both mRNAs are co-expressed in gonads, raising the question of a possible functional link.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Hu J et al. Maternal effect genes and encoding proteins are necessary for nuclear reprogramming and zygotic genome activation. However, the mechanisms that mediate these functions are largely unknown. Here we identified XM_359149, a Zar1-like gene that is predominantly expressed in oocytes and zygotes, which we designated Zar1-like (Zar1l). ZAR1L-EGFP formed multiple cytoplasmic foci in late two-cell-stage embryos. Expression of the ZAR1L C-terminus induced two-cell-stage embryonic arrest, accompanied with abnormal methylation of histone H3K4me2/3 and H3K9me2/3, and marked down-regulation of a group of chromatin modification factors including Dppa2, Dppa4, and Piwil2. When ectopically expressed in somatic cells, ZAR1L colocalized with P-body components including EIF2C1(AGO1), EIF2C2(AGO2), DDX6 and LSM14A, and germline-specific chromatoid body components including PIWIL1, PIWIL2, and LIN28. ZAR1L colocalized with ZAR1 and interacted with human LIN28. Our data suggest that ZAR1L and ZAR1 may comprise a novel family of processing-body/chromatoid-body components that potentially function as RNA regulators in early embryos. Developmental Dynamics, 2010. (c) 2009 Wiley-Liss, Inc.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Rong Y et al. (2020) Zar1 was one of the earliest mammalian maternal-effect genes to be identified. Embryos derived from Zar1-null female mice are blocked before zygotic genome activation; however, the underlying mechanism remains unclear. By knocking out Zar1 and its homolog Zar2 in mice, we revealed a novel function of these genes in oocyte meiotic maturation. Zar1/2-deleted oocytes displayed delayed meiotic resumption and polar body-1 emission and a higher incidence of abnormal meiotic spindle formation and chromosome aneuploidy. The grown oocytes of Zar1/2-null mice contained decreased levels of many maternal mRNAs and displayed a reduced level of protein synthesis. Key maturation-associated changes failed to occur in the Zar1/2-null oocytes, including the translational activation of maternal mRNAs encoding the cell-cycle proteins cyclin B1 and WEE2, as well as maternal-to-zygotic transition (MZT) licensing factor BTG4. Consequently, maternal mRNA decay was impaired and MZT was abolished. ZAR1/2 bound mRNAs to regulate the translational activity of their 3'-UTRs and interacted with other oocyte proteins, including mRNA-stabilizing protein MSY2 and cytoplasmic lattice components. These results countered the traditional view that ZAR1 only functions after fertilization and highlight a previously unrecognized role of ZAR1/2 in regulating the maternal transcriptome and translational activation in maturing oocytes.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
Recent Publications
None
Search for Antibody


created: Dec. 24, 2009, 9:25 a.m. by: hsueh   email:
home page:
last update: May 5, 2020, 12:47 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form