NCBI Summary:
This gene encodes a nuclear protein involved in homologous recombination, telomere length maintenance, and DNA double-strand break repair. By itself, the protein has 3' to 5' exonuclease activity and endonuclease activity. The protein forms a complex with the RAD50 homolog; this complex is required for nonhomologous joining of DNA ends and possesses increased single-stranded DNA endonuclease and 3' to 5' exonuclease activities. In conjunction with a DNA ligase, this protein promotes the joining of noncomplementary ends in vitro using short homologies near the ends of the DNA fragments. This gene has a pseudogene on chromosome 3. Alternative splicing of this gene results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]
General function
Chromosome organization
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Oogenesis
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Impairment of BRCA1-Related DNA Double-Strand Break Repair Leads to Ovarian Aging in Mice and Humans. Titus S et al. The underlying mechanism behind age-induced wastage of the human ovarian follicle reserve is unknown. We identify impaired ATM (ataxia-telangiectasia mutated)-mediated DNA double-strand break (DSB) repair as a cause of aging in mouse and human oocytes. We show that DSBs accumulate in primordial follicles with age. In parallel, expression of key DNA DSB repair genes BRCA1, MRE11, Rad51, and ATM, but not BRCA2, declines in single mouse and human oocytes. In Brca1-deficient mice, reproductive capacity was impaired, primordial follicle counts were lower, and DSBs were increased in remaining follicles with age relative to wild-type mice. Furthermore, oocyte-specific knockdown of Brca1, MRE11, Rad51, and ATM expression increased DSBs and reduced survival, whereas Brca1 overexpression enhanced both parameters. Likewise, ovarian reserve was impaired in young women with germline BRCA1 mutations compared to controls as determined by serum concentrations of anti-M?an hormone. These data implicate DNA DSB repair efficiency as an important determinant of oocyte aging in women.
Follicle stages
Comment
Phenotypes
Mutations
1 mutations
Species: mouse
Mutation name: type: null mutation fertility: subfertile Comment: Functions of the MRE11 complex in the development and maintenance of oocytes. Inagaki A et al. (2015) The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11 (ATLD1) allele. Mre11 (ATLD1/ATLD1) females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1 (-/-) and Trp13 (Gt/Gt) mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11 (ATLD1/ATLD1) . Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11 (ATLD1/ATLD1) follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.//////////////////