NCBI Summary:
The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to cytoplasmic bodies. The protein is expressed almost exclusively in the testis, but its function is unknown. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq]
General function
Comment
Cellular localization
Comment
Ovarian function
Oocyte maturation
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. Cui XS et al. Maternal gene expression is an important biological process in oocyte maturation and early cleavage. To gain insights into oocyte maturation and early embryo development, we used microarray analysis to compare the gene expression profiles of germinal vesicle (GV)- and metaphase II (MII)-stage oocytes. The differences in spot intensities were normalized and grouped using the Avadis Prophetic software platform. Of the 12164 genes examined, we found 1682 genes with more highly expression in GV-stage oocytes than in MII-stage oocytes, while 1936 genes were more highly expressed in MII-stage oocytes (P<0.05). The genes were grouped on the basis of the Panther classification system according to their involvement in particular biological processes. The genes that were up-regulated in GV oocytes were more likely to be involved in protein metabolism and modification, the mitotic cell cycle, electron transport, or fertilization or belong to the microtubule/cytoskeletal protein family. The genes specifically upregulated in the MII oocytes were more likely to be involved in DNA replication, amino acid metabolism, or expression of G protein-coupled receptors and signaling molecules. Identification of genes that are preferentially expressed at particular oocyte maturation stages provides insights into the complex gene regulatory networks that drive oocyte maturation and fertilization. This gene increases from GV to MII stages.