General Comment |
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12319-24. doi: 10.1073/pnas.1302827110. Epub 2013 Jul 1.
Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility.
Mosinger B, Redding KM, Parker MR, Yevshayeva V, Yee KK, Dyomina K, Li Y, Margolskee RF.
Author information
Monell Chemical Senses Center, Philadelphia, PA 19104, USA. bmosinger@monell.org
Abstract
TAS1R taste receptors and their associated heterotrimeric G protein gustducin are involved in sugar and amino acid sensing in taste cells and in the gastrointestinal tract. They are also strongly expressed in testis and sperm, but their functions in these tissues were previously unknown. Using mouse models, we show that the genetic absence of both TAS1R3, a component of sweet and amino acid taste receptors, and the gustducin α-subunit GNAT3 leads to male-specific sterility. To gain further insight into this effect, we generated a mouse model that expressed a humanized form of TAS1R3 susceptible to inhibition by the antilipid medication clofibrate. Sperm formation in animals without functional TAS1R3 and GNAT3 is compromised, with malformed and immotile sperm. Furthermore, clofibrate inhibition of humanized TAS1R3 in the genetic background of Tas1r3(-/-), Gnat3(-/-) doubly null mice led to inducible male sterility. These results indicate a crucial role for these extraoral "taste" molecules in sperm development and maturation. We previously reported that blocking of human TAS1R3, but not mouse TAS1R3, can be achieved by common medications or chemicals in the environment. We hypothesize that even low levels of these compounds can lower sperm count and negatively affect human male fertility, which common mouse toxicology assays would not reveal. Conversely, we speculate that TAS1R3 and GNAT3 activators may help infertile men, particularly those that are affected by some of the mentioned inhibitors and/or are diagnosed with idiopathic infertility involving signaling pathway of these receptors.
NCBI Summary:
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq]
|
Comment |
Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. Cui XS et al. Maternal gene expression is an important biological process in oocyte maturation and early cleavage. To gain insights into oocyte maturation and early embryo development, we used microarray analysis to compare the gene expression profiles of germinal vesicle (GV)- and metaphase II (MII)-stage oocytes. The differences in spot intensities were normalized and grouped using the Avadis Prophetic software platform. Of the 12164 genes examined, we found 1682 genes with more highly expression in GV-stage oocytes than in MII-stage oocytes, while 1936 genes were more highly expressed in MII-stage oocytes (P<0.05). The genes were grouped on the basis of the Panther classification system according to their involvement in particular biological processes. The genes that were up-regulated in GV oocytes were more likely to be involved in protein metabolism and modification, the mitotic cell cycle, electron transport, or fertilization or belong to the microtubule/cytoskeletal protein family. The genes specifically upregulated in the MII oocytes were more likely to be involved in DNA replication, amino acid metabolism, or expression of G protein-coupled receptors and signaling molecules. Identification of genes that are preferentially expressed at particular oocyte maturation stages provides insights into the complex gene regulatory networks that drive oocyte maturation and fertilization. 9 fold increases from GV to MII oocytes.
|