Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Nlr Family, Pyrin Domain-containing 6 OKDB#: 4237
 Symbols: NLRP6 Species: human
 Synonyms: PAN3, NALP6, PYPAF5, CLR11.4,NACHT DOMAIN-, LEUCINE-RICH REPEAT-, AND PYD-CONTAINING PROTEIN 6, NALP6|PYRIN DOMAIN-CONTAINING APAF1-LIKE PROTEIN 5, PYPAF5  Locus: 11p15 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: NALPs are cytoplasmic proteins that form a subfamily within the larger CATERPILLER protein family. Most short NALPs, such as NALP6, have an N-terminal pyrin (MEFV; MIM 608107) domain (PYD), followed by a NACHT domain, a NACHT-associated domain (NAD), and a C-terminal leucine-rich repeat (LRR) region. The long NALP, NALP1 (MIM 606636), also has a C-terminal extension containing a function to find domain (FIIND) and a caspase recruitment domain (CARD). NALPs are implicated in the activation of proinflammatory caspases (e.g., CASP1; MIM 147678) via their involvement in multiprotein complexes called inflammasomes (Tschopp et al., 2003 [PubMed 12563287]).[supplied by OMIM]
General function
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. Thlie A et al. BACKGROUND: In bovine maturing oocytes and cleavage stage embryos, gene expression is mostly controlled at the post-transcriptional level, through degradation and deadenylation/polyadenylation. We have investigated how post transcriptional control of maternal transcripts was affected during in vitro and in vivo maturation, as a model of differential developmental competence. RESULTS: Using real time PCR, we have analyzed variation of maternal transcripts, in terms of abundance and polyadenylation, during in vitro or in vivo oocyte maturation and in vitro embryo development. Four genes are characterized here for the first time in bovine: ring finger protein 18 (RNF18) and breast cancer anti-estrogen resistance 4 (BCAR4), whose oocyte preferential expression was not previously reported in any species, as well as Maternal embryonic leucine zipper kinase (MELK) and STELLA. We included three known oocyte marker genes (Maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), NACHT, leucine rich repeat and PYD containing 9 (NALP9)). In addition, we selected transcripts previously identified as differentially regulated during maturation, peroxiredoxin 1 and 2 (PRDX1, PRDX2), inhibitor of DNA binding 2 and 3 (ID2, ID3), cyclin B1 (CCNB1), cell division cycle 2 (CDC2), as well as Aurora A (AURKA). Most transcripts underwent a moderate degradation during maturation. But they displayed sharply contrasted deadenylation patterns that account for variations observed previously by DNA array and correlated with the presence of a putative cytoplasmic polyadenylation element in their 3' untranslated region. Similar variations in abundance and polyadenylation status were observed during in vitro maturation or in vivo maturation, except for PRDX1, that appears as a marker of in vivo maturation. Throughout in vitro development, oocyte restricted transcripts were progressively degraded until the morula stage, except for MELK ; and the corresponding genes remained silent after major embryonic genome activation. CONCLUSION: Altogether, our data emphasize the extent of post-transcriptional regulation during oocyte maturation. They do not evidence a general alteration of this phenomenon after in vitro maturation as compared to in vivo maturation, but indicate that some individual messenger RNA can be affected.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Feb. 26, 2010, 8:27 a.m. by: hsueh   email:
home page:
last update: Feb. 26, 2010, 8:28 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form