Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

sprouty homolog 1, antagonist of FGF signaling (Drosophila) OKDB#: 4296
 Symbols: SPRY1 Species: human
 Synonyms: hSPRY1,hSPRY1,hSPRY1,  Locus: 4q28.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function Intracellular signaling cascade
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by Growth Factors/ cytokines, FGF
Comment Fibroblast growth factor-2 regulation of sprouty and NR4A genes in bovine ovarian granulosa cells. Jiang Z et al. Fibroblast growth factors (FGFs) alter ovarian function, at least in part by inhibiting steroid hormone secretion and affecting survival of granulosa cells. The mechanism of action of FGFs in ovarian follicle cells is largely unknown; in the present study we identified the major pathways used by FGF2 in nonluteinizing granulosa cells cultured under serum-free conditions. FGF2 increased abundance of mRNA encoding SPRY1, 2 and 4, but not SPRY3. Common pathways employed by FGF2 in the regulation of SPRY1, 2 and 4, as demonstrated by immunoblot and inhibitor studies, included ERK1/2 and Akt signaling. In contrast, PKC activation was necessary for FGF2-stimulated expression of SPRY1 and 4, but not for SPRY2. Intracellular calcium flux is critical and sufficient for SPRY2 expression, but not for SPRY1 and 4. We also identified the orphan nuclear receptor NR4A1 as a potential early response gene in FGF2 signaling, whose expression, like that of SPRY2, is critically dependent on calcium signaling. Together, these data identify FGF2-target genes in follicular granulosa cells, and demonstrate alternative pathway use for the differential control of SPRY genes. J. Cell. Physiol. ? 2010 Wiley-Liss, Inc.
Ovarian localization Oocyte, Granulosa
Comment Fibroblast growth factor-2 regulation of sprouty and NR4A genes in bovine ovarian granulosa cells. Jiang ZL et al. Fibroblast growth factors (FGFs) alter ovarian function, at least in part by inhibiting steroid hormone secretion and affecting survival of granulosa cells. The mechanism of action of FGFs in ovarian follicle cells is largely unknown; in the present study we identified the major pathways used by FGF2 in non-luteinizing granulosa cells cultured under serum-free conditions. FGF2 increased abundance of mRNA encoding SPRY1, 2, and 4, but not SPRY3. Common pathways employed by FGF2 in the regulation of SPRY1, 2, and 4, as demonstrated by immunoblot and inhibitor studies, included ERK1/2 and Akt signaling. In contrast, PKC activation was necessary for FGF2-stimulated expression of SPRY1 and 4, but not for SPRY2. Intracellular calcium flux is critical and sufficient for SPRY2 expression, but not for SPRY1 and 4. We also identified the orphan nuclear receptor NR4A1 as a potential early response gene in FGF2 signaling, whose expression, like that of SPRY2, is critically dependent on calcium signaling. Together, these data identify FGF2-target genes in follicular granulosa cells, and demonstrate alternative pathway use for the differential control of SPRY genes. J. Cell. Physiol. 226: 1820-1827, 2011. ? 2010 Wiley-Liss, Inc.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 14, 2010, 11:48 a.m. by: hsueh   email:
home page:
last update: July 3, 2011, 2:49 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form