Histone exchange activity and its correlation with histone acetylation status in porcine oocytes. Endo T et al. In mammalian oocytes, histone H3 and histone H4 (H4) in the chromatin are highly acetylated at the germinal vesicle (GV) stage, and become globally deacetylated after GV breakdown (GVBD). Although nuclear core histones can be exchanged by cytoplasmic free histones in somatic cells, it remains unknown whether this is also the case in mammalian oocytes. Here we examined the histone exchange activity in maturing porcine oocytes before and after GVBD, and investigated the correlations between this activity and both the acetylation profile of the H4 N-terminal tail and global histone acetylation level in the chromatin. We injected Flag-tagged H4 (H4-Flag) mRNA into GV oocytes and found that the Flag signal was localized on the chromatin. We next injected mRNAs of mutated H4-Flag, which lack all acetylation sites and the whole N-terminal tail, and found that the H4 N-terminal tail and its modification weren't necessary for histone incorporation into chromatin. Despite the lack of acetylation sites, the mutated H4-Flag mRNA injection didn't decrease the acetylation level on the chromatin, indicating that the histone exchange occurs partially in the GV chromatin. In contrast to GV oocytes, the Flag signal wasn't detected on the chromatin after the injection of H4-Flag protein into the second meiotic metaphase oocytes. These results suggest that histone exchange activity changes during meiotic maturation in porcine oocytes, and that the acetylation profile of the H4 N-terminal tail has no effect on histone incorporation into chromatin and doesn't affect the global level of histone acetylation in it.
NCBI Summary:
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H4 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. [provided by RefSeq, Jul 2008]
General function
, Epigenetic modifications
Comment
Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. van den Berg IM et al. BACKGROUND Chromosome segregation errors during human oocyte meiosis are associated with low fertility in humans and the incidence of these errors increases with advancing maternal age. Studies of mitosis and meiosis suggest that defective remodeling of chromatin plays a causative role in aneuploidy. We analyzed the histone deacetylation pattern during the final stages of human oocyte maturation to investigate whether defective epigenetic regulation of chromatin remodeling in human oocytes is related to maternal age and leads to segregation errors. METHODS Human surplus oocytes of different meiotic maturation stages [germinal vesicle (GV), metaphase (M)I and MII] were collected from standard IVF/ICSI treatments. Oocytes were analyzed for acetylation of different lysines of histone 4 (H4K5, H4K8, H4K12 and H4K16) and for a-tubulin. RESULTS Human GV oocytes had an intense staining of the chromatin for all four histone 4 lysine acetylations. MI and MII stage oocytes showed either normal deacetylation or various amounts of defective histone deacetylation. Residual H4K12 acetylation was more frequently found in oocytes obtained from older women, with a significant correlation between defective deacetylation and maternal age (r = 0.185, P = 0.007). Eighty-eight percent of the oocytes with residual acetylation had misaligned chromosomes, whereas only 33% of the oocytes that showed correct deacetylated chromatin had misaligned chromosomes (P < 0.001). CONCLUSIONS We conclude that defective deacetylation during human female meiosis increases with maternal age and is correlated with misaligned chromosomes. As chromosome misalignment predisposes to segregation errors, our data imply that defective regulation of histone deacetylation could be an important factor in age-related aneuploidy.
Acetylation of H4K12 in porcine oocytes during in vitro aging: potential role of ooplasmic reactive oxygen species. Cui MS et al. Deterioration in the quality of mammalian mature oocytes during metaphase-II (M-II) arrest is called 'oocyte aging'. Although histone acetylation may affect the progression of aging in murine oocytes, the mechanism is unknown. The objective was to determine the role of ooplasmic reactive oxygen species (ROS) in acetylation of histone H4 at lysine 12 (acH4K12) in porcine aged oocytes in vitro. Based on immunostaining with a specific antibody, acetylation of H4K12 in porcine oocytes increased during in vitro aging, which coincided with changing patterns of ooplasmic ROS content. Furthermore, both hydrogen peroxide (H(2)O(2)), and the mitochondrial membrane potential disrupter, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), which can moderately elevate oocyte ROS content, significantly increased acetylation levels of H4K12 in porcine oocytes. It was noteworthy that acetylation in the CCCP group was decreased when ROS was counteracted by cysteine, a common antioxidant. In addition, the intracellular mRNA abundance of acetyltransferase gene HAT1 in aged and H(2)O(2) treated oocytes was higher than in M-II phase oocytes, suggesting that HAT1 was involved in this reaction. After parthenogenetic activation, a lower proportion of oocytes developed to the blastocyst stage after CCCP or H(2)O(2) treatment when compared with M-II phase oocytes (20 and 0% for CCCP and H(2)O(2) groups, respectively, versus 42% for the M-II group, P < 0.05). In conclusion, elevated levels of H4K12 acetylation were attributed to increased ooplasmic ROS content during porcine oocyte aging in vitro.