Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

histone H3 associated protein kinase OKDB#: 4407
 Symbols: HASPIN Species: human
 Synonyms: GSG2  Locus: 17p13.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dai J et al. In vertebrate mitosis, cohesion between sister chromatids is lost in two stages. In prophase and prometaphase, cohesin release from chromosome arms occurs under the control of Polo-like kinase 1 and Aurora B, while Shugoshin is thought to prevent removal of centromeric cohesin until anaphase. The regulatory enzymes that act to sustain centromeric cohesion are incompletely described, however. Haspin/Gsg2 is a histone H3 threonine-3 kinase required for normal mitosis. We report here that both H3 threonine-3 phosphorylation and cohesin are located at inner centromeres. Haspin depletion disrupts cohesin binding and sister chromatid association in mitosis, preventing normal chromosome alignment and activating the spindle assembly checkpoint, leading to arrest in a prometaphase-like state. Overexpression of Haspin hinders cohesin release and stabilizes arm cohesion. We conclude that Haspin is required to maintain centromeric cohesion during mitosis. We also suggest that Aurora B regulates cohesin removal through its effect on the localization of Shugoshin.

General function Chromosome organization, Enzyme
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation, Early embryo development
Comment HASPIN kinase mediates histone deacetylation to regulate oocyte meiotic maturation in pigs. Cao Z et al. (2019) HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.////////////////// DNA damage induces a kinetochore-based ATM/ATR-independent SAC arrest unique to the first meiotic division in mouse oocytes. Lane SIR et al. (2017) Mouse oocytes carrying DNA damage arrest in meiosis I, thereby preventing creation of embryos with deleterious mutations. The arrest is dependent on the spindle assembly checkpoint, which results in anaphase-promoting complex (APC) inhibition. However, little is understood about how this checkpoint is engaged following DNA damage. Here, we find that within minutes DNA damage assembles checkpoint proteins at the kinetochore, not at damage sites along chromosome arms, such that the APC is fully inhibited within 30 min. Despite this robust response, there is no measurable loss in k-fibres, or tension across the bivalent. Through pharmacological inhibition we observed the response is dependent on Mps1 kinase, Aurora kinase, and haspin. Using oocyte specific knockouts we find the response does not require the DNA damage response kinases ATM or ATR. Furthermore, checkpoint activation does not occur in response to DNA damage in fully mature eggs during meiosis II, despite the divisions being separated by just a few hours. Therefore, mouse oocytes have a unique ability to sense DNA damage rapidly by activating the checkpoint at their kinetochores.////////////////// TH2A is phosphorylated at meiotic centromere by Haspin. Hada M et al. (2017) Histone phosphorylation is sometimes associated with mitosis and meiosis. We have recently identified a phosphorylation of the 127th threonine on TH2A (pTH2A), a germ cell-specific H2A variant, in condensed spermatids and mitotic early preimplantation embryos of mice. Here, we further report the existence of pTH2A at the centromeres in metaphase I spermatocytes and oocytes. Moreover, we identified Haspin, a known kinase for the 3rd threonine on H3, is responsible for pTH2A in vivo. In contrast to the severe meiotic defect in oocytes treated with a Haspin inhibitor, pTH2A-deficient mice, in which the 127th threonine was replaced by alanine, maintained the fertility and exhibited no obvious defect in both oocytes and spermatogenesis. Interestingly, pTH2A was significantly decreased in aged oocytes, suggesting that its accumulation is regulated by centromeric cohesins. Collectively, our study proposes a new set of kinase-histone pair at meiotic centromere, which is highly coordinated during meiosis.////////////////// Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. Balboula AZ et al. (2016) Meiotic oocytes lack classic centrosomes and therefore, bipolar spindle assembly depends on clustering of acentriolar microtubule-organizing centers (MTOCs) into two poles. However, the molecular mechanism regulating MTOCs assembly into two poles is not fully understood. Haspin kinase is required to regulate Aurora kinase C (AURKC) localization at chromosomes during meiosis I (MI). Here we show that inhibition of haspin perturbed MTOC clustering into two poles, and the stability of the clustered MTOCs. Furthermore, we show that AURKC localizes to MTOCs in mouse oocytes. Inhibition of haspin perturbed the localization of AURKC at MTOCs, and overexpression of AURKC rescued the MTOC clustering defects in haspin-inhibited oocytes. Taken together, our data uncover a role for haspin as a regulator of bipolar spindle assembly by regulating AURKC localized-function at acentriolar MTOCs in oocytes.////////////////// Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. Nguyen AL et al. (2014) Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Goes up during oocyte development
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 24, 2010, 12:59 p.m. by: hsueh   email:
home page:
last update: March 20, 2019, 3:27 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form