NCBI Summary:
This cell-cycle-regulated gene encodes a protein that mediates leucine-rich nuclear export signal (NES)-dependent protein transport. The protein specifically inhibits the nuclear export of Rev and U snRNAs. It is involved in the control of several cellular processes by controlling the localization of cyclin B, MPAK, and MAPKAP kinase 2. This protein also regulates NFAT and AP-1. [provided by RefSeq, Jan 2015]
General function
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Oocyte maturation
Comment
Effects of Exportin 1 on Nuclear Transport and Meiotic Resumption in Porcine Full-grown and Growing Oocytes. Onuma A et al. (2017) Exportin 1 (XPO1) is a nuclear transport receptor involved in the nuclear export of majority proteins in somatic cells. In mammalian oocytes, however, only the presence of XPO1 has been reported at mRNA and protein levels, and the definitive functions of XPO1 and its effects on the meiotic maturation of oocytes have never been directly examined. In the present study, the expression state and the nuclear-export function of porcine XPO1 were analyzed in porcine oocytes. In addition, we investigated the effects of the overexpression and inhibition of XPO1 on meiotic regulation in full-grown and growing oocytes by mRNA injection and inhibitor treatment. Endogenous XPO1 was stably expressed in porcine oocytes during the germinal vesicle (GV) stage, and the expression of exogenous XPO1 significantly decreased the nuclear localization of XPO1 cargos, snurportin 1 and WEE1B. Inhibition of XPO1 by a specific inhibitor, leptomycin B, delayed the GV breakdown (GVBD), whereas the overexpression of XPO1 by mRNA injection accelerated the GVBD. XPO1 overexpression overcame the meiotic arrest induced by WEE1B expression in full-grown oocytes. Surprisingly, the GVBD of porcine growing oocytes, which could not resume meiosis by the maturation culture in vitro, was induced by the expression of exogenous XPO1. These results showed the presence of XPO1 and its function as a nuclear export receptor in mammalian oocytes, including growing oocytes, and they suggest that the regulation of nuclear transport has a large influence on the GV maintenance and meiotic resumption of oocytes.//////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Powell MD et al. Purpose: Identification of the biomarkers of oocyte quality, and developmental and reprogramming potential is of importance to assisted reproductive technology in humans and animals. Experimental design: PerkinElmer ExacTag Kit was used to label differentially proteins in pig oocyte extracts (oocyte proteome) and pig oocyte-conditioned in vitro maturation media (oocyte secretome) obtained with high- and low-quality oocytes. Results: We identified 16 major proteins in the oocyte proteome that were expressed differentially in high- versus low-quality oocytes. More abundant proteins in the high-quality oocyte proteome included kelch-like ECH-associated protein 1 (an adaptor for ubiquitin-ligase CUL3), nuclear export factor CRM1 and ataxia-telangiectasia mutated protein kinase. Dystrophin (DMD) was more abundant in low-quality oocytes. In the secretome, we identified 110 proteins, including DMD and cystic fibrosis transmembrane conductance regulator, two proteins implicated in muscular dystrophy and cystic fibrosis, respectively. Monoubiquitin was identified in the low-quality-oocyte secretome. Conclusions and clinical implications: A direct, quantitative proteomic analysis of small oocyte protein samples can identify potential markers of oocyte quality without the need for a large amount of total protein. This approach will be applied to discovery of non-invasive biomarkers of oocyte quality in assisted human reproduction and in large animal embryo transfer programs.