Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

dystrophin OKDB#: 4426
 Symbols: DMD Species: human
 Synonyms: BMD, CMD3B, DXS142, DXS164, DXS206, DXS230, DXS239, DXS268, DXS269, DXS270, DXS272,  Locus: Xp21.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne (DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general, DMD patients carry mutations which cause premature translation termination (nonsense or frame shift mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix. [provided by RefSeq]
General function
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Powell MD et al. Purpose: Identification of the biomarkers of oocyte quality, and developmental and reprogramming potential is of importance to assisted reproductive technology in humans and animals. Experimental design: PerkinElmer ExacTag Kit was used to label differentially proteins in pig oocyte extracts (oocyte proteome) and pig oocyte-conditioned in vitro maturation media (oocyte secretome) obtained with high- and low-quality oocytes. Results: We identified 16 major proteins in the oocyte proteome that were expressed differentially in high- versus low-quality oocytes. More abundant proteins in the high-quality oocyte proteome included kelch-like ECH-associated protein 1 (an adaptor for ubiquitin-ligase CUL3), nuclear export factor CRM1 and ataxia-telangiectasia mutated protein kinase. Dystrophin (DMD) was more abundant in low-quality oocytes. In the secretome, we identified 110 proteins, including DMD and cystic fibrosis transmembrane conductance regulator, two proteins implicated in muscular dystrophy and cystic fibrosis, respectively. Monoubiquitin was identified in the low-quality-oocyte secretome. Conclusions and clinical implications: A direct, quantitative proteomic analysis of small oocyte protein samples can identify potential markers of oocyte quality without the need for a large amount of total protein. This approach will be applied to discovery of non-invasive biomarkers of oocyte quality in assisted human reproduction and in large animal embryo transfer programs.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 15, 2010, 3:11 p.m. by: hsueh   email:
home page:
last update: Dec. 15, 2010, 3:13 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form