NCBI Summary:
This gene is one of seven beta-1,4-galactosyltransferase (beta4GalT) genes. They encode type II membrane-bound glycoproteins that appear to have exclusive specificity for the donor substrate UDP-galactose; all transfer galactose in a beta1,4 linkage to similar acceptor sugars: GlcNAc, Glc, and Xyl. Each beta4GalT has a distinct function in the biosynthesis of different glycoconjugates and saccharide structures. As type II membrane proteins, they have an N-terminal hydrophobic signal sequence that directs the protein to the Golgi apparatus and which then remains uncleaved to function as a transmembrane anchor. By sequence similarity, the beta4GalTs form four groups: beta4GalT1 and beta4GalT2, beta4GalT3 and beta4GalT4, beta4GalT5 and beta4GalT6, and beta4GalT7. The enzyme encoded by this gene synthesizes N-acetyllactosamine in glycolipids and glycoproteins. Its substrate specificity is affected by alpha-lactalbumin but it is not expressed in lactating mammary tissue. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq]
General function
Enzyme
Comment
Cellular localization
Cytoplasmic
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Granulosa
Comment
Identification of novel oocyte and granulosa cell markers. Malcuit C et al. Here we present novel gene expression patterns in the ovary as part of an ongoing assessment of published micro-array data from mouse oocytes and embryos. We present the expression patterns of 13 genes that had been determined by micro-array to be expressed in the mature egg, but not during subsequent preimplantation development. In-situ hybridization of sectioned ovaries revealed that these genes were expressed in one of two distinct patterns: (1) oocyte-specific or (2) expressed in both the oocyte and surrounding granulosa cells. Despite the fact that micro-array data demonstrated expression in the egg, several of these genes are expressed at low levels in the oocyte, but strongly expressed in granulosa cells. Eleven of these genes have no reported function or expression during oogenesis, indicating that this approach is a necessary step towards functional annotation of the genome. Also of note is that while some of these gene products have been well characterized in other tissues and cell types, others are relatively unstudied in the literature. Our results provide novel gene expression information that may provide insights into the molecular mechanisms of follicular recruitment, oocyte maturation and ovulation and will direct further experimentation into the role these genes play during oogenesis.