NCBI Summary:
This gene product belongs to the UNC-5 family of netrin receptors. Netrins are secreted proteins that direct axon extension and cell migration during neural development. They are bifunctional proteins that act as attractants for some cell types and as repellents for others, and these opposite actions are thought to be mediated by two classes of receptors. The UNC-5 family of receptors mediate the repellent response to netrin; they are transmembrane proteins containing 2 immunoglobulin (Ig)-like domains and 2 type I thrombospondin motifs in the extracellular region. [provided by RefSeq]
General function
Receptor
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Unknown
Comment
Expression regulated by
Comment
Ovarian localization
Granulosa
Comment
Identification of novel oocyte and granulosa cell markers. Malcuit C et al. Here we present novel gene expression patterns in the ovary as part of an ongoing assessment of published micro-array data from mouse oocytes and embryos. We present the expression patterns of 13 genes that had been determined by micro-array to be expressed in the mature egg, but not during subsequent preimplantation development. In-situ hybridization of sectioned ovaries revealed that these genes were expressed in one of two distinct patterns: (1) oocyte-specific or (2) expressed in both the oocyte and surrounding granulosa cells. Despite the fact that micro-array data demonstrated expression in the egg, several of these genes are expressed at low levels in the oocyte, but strongly expressed in granulosa cells. Eleven of these genes have no reported function or expression during oogenesis, indicating that this approach is a necessary step towards functional annotation of the genome. Also of note is that while some of these gene products have been well characterized in other tissues and cell types, others are relatively unstudied in the literature. Our results provide novel gene expression information that may provide insights into the molecular mechanisms of follicular recruitment, oocyte maturation and ovulation and will direct further experimentation into the role these genes play during oogenesis.
Follicle stages
Primary, Secondary, Antral, Preovulatory, Corpus luteum
Comment
Identification of novel oocyte and granulosa cell markers. Malcuit C et al. Here we present novel gene expression patterns in the ovary as part of an ongoing assessment of published micro-array data from mouse oocytes and embryos. We present the expression patterns of 13 genes that had been determined by micro-array to be expressed in the mature egg, but not during subsequent preimplantation development. In-situ hybridization of sectioned ovaries revealed that these genes were expressed in one of two distinct patterns: (1) oocyte-specific or (2) expressed in both the oocyte and surrounding granulosa cells. Despite the fact that micro-array data demonstrated expression in the egg, several of these genes are expressed at low levels in the oocyte, but strongly expressed in granulosa cells. Eleven of these genes have no reported function or expression during oogenesis, indicating that this approach is a necessary step towards functional annotation of the genome. Also of note is that while some of these gene products have been well characterized in other tissues and cell types, others are relatively unstudied in the literature. Our results provide novel gene expression information that may provide insights into the molecular mechanisms of follicular recruitment, oocyte maturation and ovulation and will direct further experimentation into the role these genes play during oogenesis.