NCBI Summary:
This gene encodes a member of the p53 family of transcription factors involved in cellular responses to stress and development. It maps to a region on chromosome 1p36 that is frequently deleted in neuroblastoma and other tumors, and thought to contain multiple tumor suppressor genes. The demonstration that this gene is monoallelically expressed (likely from the maternal allele), supports the notion that it is a candidate gene for neuroblastoma. Many transcript variants resulting from alternative splicing and/or use of alternate promoters have been found for this gene, but the biological validity and the full-length nature of some variants have not been determined. [provided by RefSeq, Feb 2011]
General function
Apoptosis
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
TAp73 is down regulated in oocytes from women of advanced reproductive age. Guglielmino MR et al. Studies on oocyte transcriptome are important to understand the biological pathways involved in oogenesis, totipotence and early embryonic development. Moreover, genes regulating physiological pathways in gametes could represent potential candidates for reproductive disorders. In addition to oocyte specific transcription factors, also the members of the p53 family could be etiologically involved due to their biological functions. In fact, their role in the control of cell cycle, apoptosis, and germ-line genome stability is well known. Female reproductive aging is one of the causes of fertility reduction and it is often associated with egg aneuploidy increase. In order to verify the potential involvement of p73 in reproductive aging, we determined its expression in single mature MII oocytes from two groups of women, younger than 35 or older than 38 years, respectively. We found that TAp73 isoforms are down regulated in oocytes from women older than 38 years. We confirmed these data in pools of mouse oocytes. TAp73 down regulation in oocytes from women of advanced reproductive age could explain both the reduction of fertility and the increase of newborns with chromosomal abnormalities.
Follicle stages
Comment
Phenotypes
Mutations
1 mutations
Species: mouse
Mutation name: type: null mutation fertility: subfertile Comment: p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. Santos Guasch GL et al. (2018) We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs. Through modulation of p73 expression in murine granulosa cells and transformed cell lines, followed by RNA-seq and chromatin immunoprecipitation sequencing, we discovered p73-dependent regulation of a gene set necessary for cell adhesion and migration and components of the focimatrix (focal intra-epithelial matrix), a basal lamina between granulosa cells that promotes follicle maturation. In summary, p73 is essential for ovarian folliculogenesis and functions as a key regulator of a gene network involved in cell-to-cell adhesion and migration.//////////////////