Mutations |
2 mutations
Species: human
Mutation name: None
type: naturally occurring
fertility: subfertile
Comment: ESR1, HK3 and BRSK1 gene variants are associated with both age at natural menopause and premature ovarian failure. Qin Y et al. ABSTRACT: BACKGROUND: : Premature ovarian failure (POF) is a complex and heterogeneous disorder that is influenced by multiple genetic components. Numerous candidate gene studies designed to identify POF susceptibility loci have been published, but most positive findings have not been confirmed in follow up studies. We sought to determine if sequence variants previously associated with age at natural menopause (AANM) or early menopause (EM) contribute as well to genetic susceptibility to POF. METHOD: S: Our study was performed on 371 unrelated idiopathic POF patients and 800 female controls, all Chinese Han. Thirty six SNPs from previous genome-wide association studies (GWAS) responsible for AANM or EM and 3 additional SNPs in ESR1, and 2 additional SNPs in PTHB1 were tested using the Sequenom MassARRAY iPLEX platform for genotyping. RESULTS: : Three SNPs rs2278493 in HK3, rs2234693 in ESR1 and rs12611091 in BRSK1 showed nominally significant association with POF. Thus, a plausible relationship could exist between ESR1, BRSK1, HK3 and POF. CONCLUSIONS: : This largest association study undertaken to determine correlation between POF and AANM / EM revealed three significant SNPs (rs2278493, rs2234693, and rs12611091). All are associated with not only AAWM and EM but also POF. Insights into shared genetic susceptibility between POF and AANM/EM will provide novel entry points for unraveling genetic mechanism involved in ovarian reserve and oocyte aging processes.
Species: human
Mutation name: None
type: naturally occurring
fertility: fertile
Comment: Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Schuh-Huerta SM et al. Oocyte loss has a significant impact on fertility and somatic health. Yet, we know little about factors that impact this process. We sought to identify genetic variants associated with ovarian reserve (oocyte number as measured by antral follicle count, AFC). Based on recently published genome-wide scans that identified loci associated with age of menopause, we also sought to test our hypothesis that follicle number and menopausal age share underlying genetic associations. We analyzed menopause-related variants for association with follicle number in an independent population of approximately 450 reproductive-aged women of European and African ancestry; these women were assessed for AFC, anthropometric, clinical, and lifestyle factors. One SNP strongly associated with later menopausal age in Caucasian women (+1.070.11years) in previous work was also associated with higher follicle counts in Caucasians (+2.791.67 follicles) in our study. This variant is within the Minichromosome Maintenance Complex Component 8 (MCM8) gene, which we found was expressed within oocytes in follicles of the human ovary. In genome-wide scans of AFC, we also identified one marginally genome-wide and several nominally significant SNPs within several other genes associated with follicle number in both ethnic groups. Further, there were overlapping variants associated with multiple ovarian reserve markers (AFC, serum hormone levels, menopausal age). This study provides the first evidence for direct genetic associations underlying both follicle number and menopause and identifies novel candidate genes. Genetic variants associated with ovarian reserve may facilitate discovery of genetic markers to predict reproductive health and lifespan in women.Table 2
|