Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

interleukin 11 OKDB#: 4621
 Symbols: IL11 Species: human
 Synonyms: AGIF, IL-11  Locus: 19q13.42 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Therapeutic Targeting of IL-11 for Chronic Lung Disease. Kortekaas RK et al. (2021) Interleukin (IL)-11 was originally recognized as an immunomodulatory and hematopoiesis-inducing cytokine. However, although IL-11 is typically not found in healthy individuals, it is now becoming evident that IL-11 may play a role in diverse pulmonary conditions, including IPF, asthma, and lung cancer. Additionally, experimental strategies targeting IL-11, such as humanized antibodies, have recently been developed, revealing the therapeutic potential of IL-11. Thus, further insight into the underlying mechanisms of IL-11 in lung disease may lead to the ability to interfere with pathological conditions that have a clear need for disease-modifying treatments, such as IPF. In this review, we outline the effects, expression, signaling, and crosstalk of IL-11 and focus on its role in lung disease and its potential as a therapeutic target./////We propose that the effect of IL-11 is complex and actually depends on the cell type and the context. For example, IL-11 can activate fibroblasts and stimulate their collagen deposition, and overactivity of IL-11 leads to fibrosis in multiple organs 13.,16.,72.]. ///////////// IL11 is a crucial determinant of cardiovascular fibrosis. [Schafer S et al. (2017) Fibrosis is a final common pathology in cardiovascular disease1. In the heart, fibrosis causes mechanical and electrical dysfunction1,2 and in the kidney, it predicts the onset of renal failure3. Transforming growth factor β1 (TGFB1) is the principal pro-fibrotic factor4,5 but its inhibition is associated with side effects due to its pleiotropic roles6,7. We hypothesised that downstream effectors of TGFB1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicities. Using integrated imaging-genomics analyses of primary human fibroblasts, we found that Interleukin 11 (IL11) upregulation is the dominant transcriptional response to TGFB1 exposure and required for its profibrotic effect. IL11 and its receptor (IL11RA) are expressed specifically in fibroblasts where they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il11 injection causes heart and kidney fibrosis and organ failure whereas genetic deletion of Il11ra1 is protective against disease. Thus, inhibition of IL11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These data reveal a central role of IL11 in fibrosis and we propose inhibition of IL11 as a new therapeutic strategy to treat fibrotic diseases.////////////////// Interleukin-11 alters placentation and causes preeclampsia features in mice. Winship AL et al. (2015) Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE.//////////////////

NCBI Summary: The protein encoded by this gene is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor IL6ST (gp130). This cytokine is shown to stimulate the T-cell-dependent development of immunoglobulin-producing B cells. It is also found to support the proliferation of hematopoietic stem cells and megakaryocyte progenitor cells. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jun 2012]
General function
Comment
Cellular localization
Comment
Ovarian function Luteinization
Comment
Expression regulated by LH
Comment DNA microarray
Ovarian localization Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Stolk L et al. To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-?B signaling and mitochondrial dysfunction as biological processes related to timing of menopause.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Feb. 2, 2012, 3:05 p.m. by: hsueh   email:
home page:
last update: May 14, 2021, 9:26 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form