General Comment |
NCBI Summary:
MARCH1 is a member of the MARCH family of membrane-bound E3 ubiquitin ligases (EC 6.3.2.19). MARCH proteins add ubiquitin (see MIM 191339) to target lysines in substrate proteins, thereby signaling their vesicular transport between membrane compartments. MARCH1 downregulates the surface expression of major histocompatibility complex (MHC) class II molecules (see MIM 142880) and other glycoproteins by directing them to the late endosomal/lysosomal compartment (Bartee et al., 2004 [PubMed 14722266]; Thibodeau et al., 2008 [PubMed 18389477]; De Gassart et al., 2008 [PubMed 18305173]).[supplied by OMIM, Mar 2010]
|
Mutations |
1 mutations
Species: mouse
Mutation name: None
type: naturally occurring
fertility: fertile
Comment: An Integrative Genomic Analysis of the Superior Fecundity Phenotype in QSi5 Mice. Wei J et al. Laboratory inbred mouse models are a valuable resource to identify quantitative trait loci (QTL) for complex reproductive performance traits. Advances in mouse genomics and high density single nucleotide polymorphism mapping has enabled genome-wide association studies to identify genes linked with specific phenotypes. Gene expression profiles of reproductive tissues also provide potentially useful information for identifying genes that play an important role. We have developed a highly fecund inbred strain, QSi5, with accompanying genotyping for comparative analysis of reproductive performance. Here we analyzed the QSi5 phenotype using a comparative analysis with fecundity data derived from 22 inbred strains of mice from the Mouse Phenome Project, and integration with published expression data from mouse ovary development. Using a haplotype association approach, 400 fecundity-associated regions (FDR<0.05) with 499 underlying genes were identified. The most significant associations were located on Chromosomes 14, 8, and 6, and the genes underlying these regions were extracted. When these genes were analyzed for expression in an ovarian development profile (GSE6916) several distinctive co-expression patterns across each developmental stage were identified. The genetic analysis also refined 21 fecundity associated intervals on Chromosomes 1, 6, 9, 13, and 17 that overlapped with previously reported reproductive performance QTL. The combined use of phenotypic and in silico data with an integrative genomic analysis provides a powerful tool for elucidating the molecular mechanisms underlying fecundity.
|