Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

RNA binding motif, single stranded interacting protein 1 OKDB#: 4685
 Symbols: RBMS1 Species: human
 Synonyms: YC1, MSSP, SCR2, HCC-4, MSSP-1, MSSP-2, MSSP-3, C2orf12, MGC3331, MGC15146, MGC70597, MGC97258, MGC97270, MGC97282, MGC99543, DKFZp564H0764,  Locus: 2q24.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a member of a small family of proteins which bind single stranded DNA/RNA. These proteins are characterized by the presence of two sets of ribonucleoprotein consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in RNA binding proteins, and required for DNA binding. These proteins have been implicated in such diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. Several transcript variants, resulting from alternative splicing and encoding different isoforms, have been described. A pseudogene for this locus is found on chromosome 12. [provided by RefSeq, Feb 2009]
General function Cell proliferation, RNA processing, DNA binding, RNA binding
Comment
Cellular localization Cytoplasmic, Nuclear
Comment
Ovarian function Steroid metabolism
Comment Transactivation of microRNA-383 by Steroidogenic Factor-1 Promotes Estradiol Release from Mouse Ovarian Granulosa Cells by Targeting RBMS1. Yin M et al. Our previous studies have shown that microRNA-383 (miR-383) is one of the most down-regulated miRNA in TGF-1-treated mouse ovarian granulosa cells (GC). However, the roles and mechanisms of miR-383 in GC function during follicular development remain unknown. In this study, we found that miR-383 was mainly expressed in GC and oocytes of mouse ovarian follicles. Overexpression of miR-383 enhanced estradiol release from GC through targeting RNA binding motif, single stranded interacting protein 1 (RBMS1). miR-383 inhibited RBMS1 by affecting its mRNA stability, which subsequently suppressed the level of c-Myc (a downstream target of RBMS1). Forced expression of RBMS1 or c-Myc attenuated miR-383-mediated steroidogenesis-promoting effects. Knockdown of the transcription factor steroidogenic factor-1 (SF-1) significantly suppressed the expression of Sarcoglycan zeta (SGCZ) (miR-383 host gene), primary and mature miR-383 in GC, indicating that miR-383 was transcriptionally regulated by SF-1. Luciferase and chromatin immunoprecipitation assays revealed that SF-1 specifically bound to the promoter region of SGCZ and directly transactivated miR-383 in parallel with SGCZ. In addition, SF-1 was involved in regulation of miR-383- and RBMS1/c-Myc-mediated estradiol release from GC. These results suggest that miR-383 functions to promote steroidogenesis by targeting RBMS1, at least in part, through inactivation of c-Myc. SF-1 acts as a positive regulator of miR-383 processing and function in GC. Understanding of regulation of miRNA biogenesis and function in estrogen production will potentiate the usefulness of miRNA in the control of reproduction and treatment of some steroid-related disorders.
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 20, 2012, 9:15 a.m. by: hsueh   email:
home page:
last update: May 20, 2012, 9:18 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form