Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 23a OKDB#: 4699
 Symbols: MIR23A Species: human
 Synonyms: MIRN23A, mir-23a, miRNA23A, hsa-mir-23a  Locus: 19p13.12 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function Cell proliferation, RNA processing, RNA binding
Comment
Cellular localization Cytoplasmic
Comment Identification of microRNAs in granulosa cells from patients with different levels of ovarian reserve function and the potential regulatory function of miR-23a in granulosa cell apoptosis. Luo H et al. (2018) This study aimed to determine the microRNA (miRNA) profiles in granulosa cells (GCs) from the follicular fluid (FF) of patients with varying levels of ovarian reserve function. We included 45 women undergoing in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) treatment. After collecting GCs from each patient, total RNA was extracted from 12 samples. Using Illumina/deep-sequencing technology, we analyzed the small RNAs in each group. Using the R package, we identified the differentially expressed (DE) miRNAs among patients with varying levels of ovarian reserve function. We identified 20 conserved and 3 novel miRNAs that were upregulated in the poor ovarian response (POR) group and 30 conserved miRNAs and 1 novel miRNA that were upregulated in the polycystic ovary syndrome (PCOS) group. Bioinformatics analysis revealed complementary pairing between miR-23a and the 3'-untranslated region (UTR) of the Sirt1 mRNA. miR-23a can regulate SIRT1 protein expression at the posttranscriptional level in GCs. Overexpressing miR-23a can inhibit the expression of SIRT1, decrease the stimulatory effect of SIRT1 on the ERK1/2 pathway, inhibit the expression of p-ERK1/2, and increase apoptosis in GCs. Previous studies confirmed that miR-23a targets SIRT1 and promotes apoptosis in GCs by inhibiting the ERK1/2 signaling pathway. This study provides a novel perspective regarding the role of miRNAs in the regulation of human GC apoptosis in vitro.//////////////////
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Granulosa
Comment Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Wang H et al. Recent studies implicate the regulatory function of microRNAs (miRNAs) in oocyte maturation and ovarian follicular development. Differentially expressed miRNAs are found between the plasma of premature ovarian failure (POF) patients and normal cycling women. In this study, miRNA-regulated signaling pathways and related genes were described by using Gene Ontology analysis and KEGG pathway analysis. The effect of mir-23a on granulosa cell apoptosis was also studied by examining the protein expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-3, followed by subsequent counting of apoptotic cells after Hoechst 33258 staining. Both Gene Ontology analysis and pathway analysis suggested that many signaling pathways, including the AKT signaling pathway, steroid hormone receptor signaling pathways, and others, were regulated by this group of differentially expressed miRNAs. A decrease in XIAP expression (mRNA and protein level) and caspase-3 protein levels and an increase in cleaved caspase-3 protein were observed in human ovarian granulosa cells transfected with pre-mir-23a, along with an increased occurrence of apoptosis. In conclusion, differentially expressed miRNAs in the plasma of POF patients may have regulatory effects on proliferation and apoptosis of granulosa cells by affecting different signaling pathways. Mir-23a may play important roles in regulating apoptosis via decreasing XIAP expresson in human ovarian granulosa cells.
Follicle stages
Comment
Phenotypes POF (premature ovarian failure)
Mutations 1 mutations

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: Role of microRNAs in premature ovarian insufficiency. Guo Y et al. (2017) Premature ovarian insufficiency (POI) is a typical disorder of amenorrhea lasting for a minimum of 4 months. The typical characteristics comprised of declined estrogen and raised serum concentrations of follicle-stimulating hormone (FSH) in women <40-year-old, primarily originating from iatrogenic factors, karyotypic abnormalities, and genetic factors. However, the etiology of POI remains unknown in approximately 90% of cases. POI could lead to infertility, osteoporosis, cardiovascular disorder, and cognitive dysfunction. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (ncRNAs) that can mediate post-translational silencing of the genes involved in the regulation of proliferation, differentiation, apoptosis, development, tumorigenesis, and hematopoiesis. Recently, the regulatory functions of miRNAs in the development of POI have been the topic of intensive research. The present review addresses the association of miRNAs' machinery genes (Dicer, Drosha, and XPO5) with POI and the miRNA expression profiles in the plasma of patients with POI. In addition, several specific miRNAs (miR-23a, miR-27a, miR-22-3p, miR-146a, miR-196a, miR-290-295, miR-423, and miR-608) related to POI are also examined in order to highlight the issues that deserve further investigation. A thorough understanding of the exact regulatory roles of miRNAs is imperative to gain novel insights into the etiology of idiopathic POI and offer new research directions in the field.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 2, 2012, 3:55 p.m. by: hsueh   email:
home page:
last update: Nov. 28, 2018, 3:19 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form