Mutations |
2 mutations
Species: human
Mutation name: None
type: naturally occurring
fertility: fertile
Comment: Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Schuh-Huerta SM et al. Oocyte loss has a significant impact on fertility and somatic health. Yet, we know little about factors that impact this process. We sought to identify genetic variants associated with ovarian reserve (oocyte number as measured by antral follicle count, AFC). Based on recently published genome-wide scans that identified loci associated with age of menopause, we also sought to test our hypothesis that follicle number and menopausal age share underlying genetic associations. We analyzed menopause-related variants for association with follicle number in an independent population of approximately 450 reproductive-aged women of European and African ancestry; these women were assessed for AFC, anthropometric, clinical, and lifestyle factors. One SNP strongly associated with later menopausal age in Caucasian women (+1.07???0.11?years) in previous work was also associated with higher follicle counts in Caucasians (+2.79???1.67 follicles) in our study. This variant is within the Minichromosome Maintenance Complex Component 8 (MCM8) gene, which we found was expressed within oocytes in follicles of the human ovary. In genome-wide scans of AFC, we also identified one marginally genome-wide and several nominally significant SNPs within several other genes associated with follicle number in both ethnic groups. Further, there were overlapping variants associated with multiple ovarian reserve markers (AFC, serum hormone levels, menopausal age). This study provides the first evidence for direct genetic associations underlying both follicle number and menopause and identifies novel candidate genes. Genetic variants associated with ovarian reserve may facilitate discovery of genetic markers to predict reproductive health and lifespan in women.
Species: mouse
Mutation name:
type: null mutation
fertility: fertile
Comment: TMEM150B is dispensable for oocyte maturation and female fertility in mouse. Liu R et al. (2020) Premature ovarian insufficiency (POI) refers to severe decline of ovary function in females which usually leads to infertility. It has been reported that the TMEM150B gene is mostly associated with age at natural menopause, early menopause and POI, but its role in female reproduction remains unknown. In this study, we found Tmem150b was highly expressed in mouse oocytes, but its deletion had no obvious effect on meiotic maturation of oocytes indicated by first polar body emission and spindle morphology. There were also no obvious differences in follicle development and corpus luteum formation between knockout and wild type mice. Finally, knockout of Tmem150b did not affect female fertility and sexual hormone levels. In summary, our results suggest that TMEM150B is not essential for female fertility in mice.//////////////////
|