NCBI Summary:
This gene encodes a member of the A-kinase anchor protein family. A-kinase anchor proteins are scaffold proteins that contain a binding domain for the RI/RII subunit of protein kinase A (PKA) and recruit PKA and other signaling molecules to specific subcellular locations. This gene encodes a nuclear A-kinase anchor protein that binds to the RII alpha subunit of PKA and may play a role in chromosome condensation during mitosis by targeting PKA and the condensin complex to chromatin. A pseudogene of this gene is located on the short arm of chromosome 9. [provided by RefSeq, May 2011]
General function
, Epigenetic modifications
Comment
Cellular localization
Comment
Ovarian function
Steroid metabolism, Early embryo development
, Pluripotent cell derivation
Comment
Role of A-kinase anchoring protein 95 in the regulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in human ovarian granulosa cells. Gu Y et al. (2018) Irregular expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) is involved in the development of polycystic ovary syndrome (PCOS). Activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway plays a crucial role in FSH regulation of CYP19A1 in human ovarian granulosa cells. A-Kinase anchor protein 95 (AKAP95) is known to confine PKA to the nucleus. However, it is unclear whether anchoring PKA to the nucleus is essential for the induction of CYP19A1 by FSH in human ovarian granulosa cells. Using the human granulosa cell line KGN and primary cultured human luteinised granulosa cells (hLGCs), we found that knockdown of AKAP8, the gene encoding AKAP95, or inhibition of AKAP95 reduced the amount of PKA anchored in the nucleus and attenuated the phosphorylation of CREB by either FSH or activation of the cAMP/PKA pathway. Moreover, knockdown of AKAP8 or inhibition of AKAP95 also significantly attenuated FSH-induced CYP19A1 expression and oestrogen synthesis. Furthermore, significant decreases in AKAP95 and CYP19A1 were observed in hLGCs obtained from PCOS patients. The results of the present study demonstrate a crucial role for AKAP95 in CYP19A1 expression and oestrogen synthesis in hLGCs, which implies that AKAP95 may be involved in the pathogenesis of PCOS.//////////////////
DNA methylation, histone modifications and behaviour of AKAP95 during mouse oocyte growth and upon nuclear transfer of foreign chromatin into fully grown prophase oocytes. Hoffmann S et al. The poor efficiency of mammalian cloning is due to inappropriate/incomplete epigenetic reprogramming of the donor chromatin. As the success in reprogramming of the donor nucleus may require activity of similar mechanisms which reprogram the chromatin in the course of gametogenesis, we decided to follow the status of some epigenetic markers in the late phase of oogenesis in mice, i.e. in prophase oocytes during their growth and after completion of the growth phase. Our analysis reveals an increase in the level of global DNA methylation starting in oocytes with diameters around 60 microm which was further elevated until completion of oocyte growth. A similar increase was observed in respect to the acetylation of histone H4. On the other hand, the methylation of histone H4 Arg3 was constantly high until the end of oocyte growth, although it differed between fully grown oocytes depending on the type of spatial chromatin organization. We have also studied the AKAP95 protein which was abundant at earlier stages but decreased in fully grown oocytes according to changes in their chromatin organization. The nuclear transfer of different types of donor nuclei with hypomethylated DNA into fully grown prophase oocytes did not increase the global level of methylation of transferred foreign chromatin, regardless if the recipient oocyte was devoid of its own nucleus or its nucleus was left intact. This suggests a major problem in the ability of recipient oocytes to modify donor DNA methylation.