NCBI Summary:
This gene encodes a protein that contains several helicase family domains. Mutations in this gene have been found in some patients with the CHARGE syndrome. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2015]
General function
Enzyme
Comment
Cellular localization
Comment
Ovarian function
Early embryo development
, Pluripotent cell derivation
Comment
Systems Genetics Implicates Cytoskeletal Genes in Oocyte Control of Cloned Embryo Quality. Cheng Y et al. Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, functional and network analyses yielded a short list of likely candidate genes in two categories. The major category-including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)-encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors.
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations
1 mutations
Species: human
Mutation name: type: naturally occurring fertility: subfertile Comment: Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Day FR et al. (2016) Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms. //////////////////