Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 17a-1 OKDB#: 4836
 Symbols: mir17a-1 Species: fish
 Synonyms: dre-mir-17a-1  Locus:


For retrieval of Nucleotide and Amino Acid sequences please go to: Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function Cell proliferation
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function
Comment Expression and regulation of miR-17a and miR-430b in zebrafish ovarian follicles. Abramov R et al. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression and control many developmental and physiological processes. Oocyte maturation in fish is mainly regulated by luteinizing hormone (LH) and maturation-inducing hormone (MIH). In addition, growth factors, including members of the transforming growth factor (TGF-) superfamily, have also been shown to play important roles in regulating oocyte maturation. In this study, we determined the expression and regulation of two miRNAs, miR-17a and miR-430b, which potentially target signalling molecules in the TGF- pathway, in zebrafish ovarian follicles. Using real-time PCR, we observed that miR-17a and miR-430b levels in follicular cells were significantly lower in late vitellogenic and full grown follicles than in early vitellogenic follicles. Treatment with a LH analog, human chorionic gonadotropin, significantly down-regulated miR-17a and miR-430b expression in follicular cells but had no effect on their expression in oocytes. Forskolin also inhibited follicular cell miR-430b expression; however, no significant changes in miR-17a levels were observed after Forskolin treatment. Finally, MIH did not affect the expression of these miRNAs either in follicular cells or oocytes at the time points tested. These findings suggest that miR-17a and miR-430b may be involved in the regulation of follicle development and oocyte maturation in zebrafish.
Expression regulated by
Comment MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Andreas E et al. (2016) Granulosa cell proliferation and differentiation are key developmental steps involved in the formation of the dominant follicle eligible for ovulation. This process is, in turn, regulated by spatiotemporally emerging molecular events. MicroRNAs (miRNAs) are one of the molecular signatures believed to regulate granulosa cell function by fine-tuning gene expression. Previously, we showed that the miR-17-92 cluster was differentially expressed in granulosa cells from subordinate and dominant follicles at day 19 of the estrous cycle. However, the role of this miRNA cluster in bovine follicular cell function is not known. Therefore, in the present study, we investigate the role of the miR-17-92 cluster in granulosa cell function by using an in vitro model. Target prediction and luciferase assay analysis revealed that the miR-17-92 cluster coordinately regulated the PTEN and BMPR2 genes. Overexpression of the miR-17-92 cluster by using a mimic promoted granulosa cell proliferation and reduced the proportion of differentiated cells. However, cluster inhibition resulted in decreased proliferation and increased differentiation in granulosa cells. This was further supported by expression analysis of marker genes of proliferation and differentiation. The role of the miR-17-92 cluster was cross-validated by selective knockdown of its target genes by the short interfering RNA technique. Suppression of the PTEN and BMPR2 genes revealed similar phenotypic and molecular alterations as observed when the granulosa cells were transfected with the miR-17-92 cluster mimic. Thus, the miR-17-92 cluster is involved in granulosa cell proliferation and differentiation by coordinately targeting the PTEN and BMPR2 genes.//////////////////
Ovarian localization
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
Recent Publications
None
Search for Antibody


created: March 5, 2013, 2:36 p.m. by: hsueh   email:
home page:
last update: May 31, 2016, 8:52 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form