NCBI Summary:
This gene encodes a member of the multiple epidermal growth factor-like domains protein family. The encoded protein plays a role in cell adhesion, motility and proliferation, and is a critical mediator of apoptotic cell phagocytosis as well as amyloid-beta peptide uptake in the brain. Expression of this gene may be associated with schizophrenia, and mutations in this gene are a cause of early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) as well as congenital myopathy with minicores. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Apr 2012]
General function
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
LH, Steroids
Comment
Ovarian localization
Granulosa
Comment
The absence of ER?results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles. Binder AK et al. Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER) ?is highly expressed in ovarian granulosa cells and mice lacking ER?(?RKO) are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and while informative, provides confounding results due to the heterogeneous cell types present including granulosa, theca and oocytes and exposure to in vitro conditions. Herein, we isolated preovulatory granulosa cells from WT and ER?null mice using laser capture microdissection to examine the genomic transcriptional response downstream of PMSG (mimicking FSH) and PMSG/hCG (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ER?null ovaries. ER?null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ER?in granulosa cells. LH responsive genes including Abcb1b and Fam110c show reduced expression in ER?null granulosa cells; however novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggests that granulosa cells from ER?null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.