Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

adenosine deaminase, RNA-specific OKDB#: 4855
 Symbols: ADAR Species: human
 Synonyms: DSH, AGS6, G1P1, IFI4, P136, ADAR1, DRADA, DSRAD, IFI-4, K88DSRBP,  Locus: 1q21.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes the enzyme responsible for RNA editing by site-specific deamination of adenosines. This enzyme destabilizes double-stranded RNA through conversion of adenosine to inosine. Mutations in this gene have been associated with dyschromatosis symmetrica hereditaria. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2010]
General function RNA processing, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Garca-Lpez J et al. Adenosine deaminases-acting-on-RNA (ADAR) proteins induce adenosine-to-inosine editing in double-stranded RNA molecules. This editing generates RNA diversity at the post-transcriptional level, and it has been implicated in the control of cell differentiation and development. The editing of microRNA (miRNA) precursors, along with Tudor-SN (Snd1) activity, could lead to the elimination of selected miRNAs and reprogram miRNA activity. Here, we report the dynamics of adenosine-to-inosine editing in miRNA precursors and their selected elimination during mouse preimplantation development. Adar1p110 and Snd1 were found to be strongly but differentially expressed in oocytes and zygotes with respect to later pre-implantation stages. When the biogenesis of miR-151 was assessed, the majority of miR-151 precursors was edited and subsequently eliminated during early development. Deep sequencing of this and other miRNAs confirmed that, in general, edited precursors were selectively eliminated at early post-zygotic stages. Moreover, in oocytes and throughout the zygote-to-blastocyst stages, Tudor-SN accumulated in newly discovered aggregates termed 'T bodies'. These results provide new insight into how editing and Tudor-SN-mediated elimination of miRNA precursors is regulated during early development.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: April 17, 2013, 4:32 p.m. by: hsueh   email:
home page:
last update: April 17, 2013, 4:33 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form