Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

glutamate receptor, ionotropic, N-methyl D-aspartate 2B OKDB#: 4883
 Symbols: GRIN2B Species: human
 Synonyms: MRD6, NR2B, hNR3, GluN2B, NMDAR2B,  Locus: 12p12 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008]
General function Channel/transport protein
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment Expression of N-Methyl-D-Aspartate Receptor Subunits in the Bovine Ovum: Ova as a Potential Source of Autoantigens Causing Anti-NMDAR Encephalitis. Tachibana N et al. (2015) Autoimmune synaptic encephalitis is characterized by the presence of autoantibodies against synaptic constituent receptors and manifests as neurological and psychiatric disorders. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is such an autoimmune disorder that predominantly affects young women. It is associated with antibodies against the extracellular region of the NR1 subunit of postsynaptic NMDAR. Each NMDAR functions as a heterotetrameric complex that is composed of four subunits, including NR1 and NR2A, NR2B, or NR2C. Importantly, ovarian teratoma is a typical complication of anti-NMDAR encephalitis in female patients and may contain antigenic neural tissue; however, antigenic sites remain unknown in female patients without ovarian teratoma. The purpose of this study was to investigate the expression of NMDARs in the ovum. We detected NR1 and NR2B immunoreactivity in protein fractions extracted from the bovine ovary and ova by SDS-polyacrylamide gel electrophoresis and immunoblotting analysis. Immunoprecipitates digested with trypsin were analyzed by reverse phase liquid chromatography coupled to tandem mass spectrometry. We obtained the following five peptides: SPFGRFK and KNLQDR, which are consistent with partial sequences of human NR1, and GVEDALVSLK, QPTVAGAPK, and NEVMSSK, which correspond to those of NR2A, NR2B and NR2C, respectively. Immunocytochemical analysis revealed that the bovine ovum was stained with the immunoglobulin G purified from the serum of a patient with anti-NMDAR encephalitis. Taken together, we propose that the normal ovum expresses NMDARs that have strong affinity for the disease-specific IgG. The presence of NMDARs in ova may help explain why young females without ovarian teratomas are also affected by anti-NMDAR encephalitis.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Identification of the N-Methyl-D-Aspartate Receptor (NMDAR)-Related Epitope, NR2B, in the Normal Human Ovary: Implication for the Pathogenesis of Anti-NMDAR Encephalitis. Tachibana N et al. N-methyl-D-aspartate receptors (NMDARs) are one type of ionotropic glutamate receptors (GluRs) and are heterotetrametric cation channels composed of NMDAR1 (NR1), NMDAR2 (NR2A, 2B, 2C or 2D) and NMDAR3 (NR3A or NR3B) subunits. The main subunits are NR1 and NR2 and their combinations are classified into several diverse forms including NR1/NR1/NR2A/NR2A, NR1/NR1/NR2B/NR2B and NR1/NR1/NR2A/NR2B. NMDARs are physiologically related to synapse development and synaptic plasticity in the central nervous system. Anti-NMDAR encephalitis is a form of autoimmune limbic encephalitis mainly affecting young women, with various manifestations including initial psychiatric symptoms, subsequent unresponsiveness, intractable generalized seizure, dysautonomia and orofacial dyskinesia. This disorder is often accompanied by ovarian teratoma that is originated from oocytes. Anti-neural antibody for the NR1/NR2 heteromer of NMDAR has been identified as a disease-specific hallmark. It has been emphasized that neural components in ovarian teratoma act as a trigger to produce anti-NMDAR antibodies, although about half of the patients with anti-NMDAR encephalitis are not associated with ovarian teratoma. To identify NMDAR-related epitopes located outside of the brain, we performed immunohistochemical examinations of normal human ovary and testis using specific antibodies against NR1, NR2A and NR2B, respectively, and found expression of the NR2B epitope in the cytoplasm of oocytes. In contrast, the testis showed no immunohistochemical reactivity. Therefore, oocytes contain NMDAR-related epitopes including NR2B. The NMDAR-related epitopes in normal oocytes may cause an antigen-antibody reaction in certain pathological conditions. The presence of NR2B immunoreactivity in oocytes may account for the fact that anti-NMDAR encephalitis predominantly affects young females.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 15, 2013, 4 p.m. by: hsueh   email:
home page:
last update: March 31, 2015, 11:10 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form