Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

abnormal spindle microtubule assembly OKDB#: 489
 Symbols: ASPM Species: human
 Synonyms: ASP, MCPH5, Calmbp1  Locus: 1q31 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene is the human ortholog of the Drosophila melanogaster 'abnormal spindle' gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts. Studies in mouse also suggest a role of this gene in mitotic spindle regulation, with a preferential role in regulating neurogenesis. Mutations in this gene are associated with microcephaly primary type 5. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2011]
General function
Comment
Cellular localization
Comment
Ovarian function Oocyte maturation , Germinal vesicle breakdown
, First polar body extrusion
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment The Microtubule-Associated Protein ASPM Regulates Spindle Assembly and Meiotic Progression in Mouse Oocytes. Xu XL et al. The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: human
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Pulvers JN et al. Mutations in ASPM (abnormal spindle-like microcephaly associated) cause primary microcephaly in humans, a disorder characterized by a major reduction in brain size in the apparent absence of nonneurological anomalies. The function of the Aspm protein in neural progenitor cell expansion, as well as its localization to the mitotic spindle and midbody, suggest that it regulates brain development by a cell division-related mechanism. Furthermore, evidence that positive selection affected ASPM during primate evolution has led to suggestions that such a function changed during primate evolution. Here, we report that in Aspm mutant mice, truncated Aspm proteins similar to those causing microcephaly in humans fail to localize to the midbody during M-phase and cause mild microcephaly. A human ASPM transgene rescues this phenotype but, interestingly, does not cause a gain of function. Strikingly, truncated Aspm proteins also cause a massive loss of germ cells, resulting in a severe reduction in testis and ovary size accompanied by reduced fertility. These germline effects, too, are fully rescued by the human ASPM transgene, indicating that ASPM is functionally similar in mice and humans. Our findings broaden the spectrum of phenotypic effects of ASPM mutations and raise the possibility that positive selection of ASPM during primate evolution reflects its function in the germline.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Jan. 31, 2000, midnight by: uni   email:
home page:
last update: May 5, 2016, 2:24 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form