Neuropsychological Deficits in Mice Depleted of the Schizophrenia Susceptibility Gene CSMD1. Steen VM 2013 et al.
Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra.
/////////////////////////
Follicle stages
Comment
Phenotypes
POF (premature ovarian failure)
Mutations
1 mutations
Species: human
Mutation name: type: naturally occurring fertility: subfertile Comment: Array-CGH diagnosis in ovarian failure: identification of new molecular actors for ovarian physiology. Jaillard S et al. (2016) Ovarian failure (OF) is considered premature if it occurs before the age of 40. This study investigates the genetic aetiology underlying OF in women under the age of 40 years. We conducted an experimental prospective study performing all genome microarrays in 60 patients younger than 40 years presenting an OF revealed by a decrease of circulating Anti-Müllerian Hormone (AMH) and leading to an oocyte donation program. We identified nine significant copy number variations (CNVs) including candidate genes potentially implicated in reproductive function. These genes are principally involved in cell division and chromosome segregation (SYCE1, CLASP1, CENP-A, CDC16), in ciliary development and/or function (RSPH1, KIF24), are linked with known gonadal genes or expressed in female genital tract (CSMD1, SEMA6D, KIAA1324). Our data strengthen the idea that microarrays should be used in combination with karyotype for aetiological assessment of patients with OF. This analysis may have a therapeutic impact as the identification of new molecular actors for gonadal development or ovarian physiology is useful for the prediction of an ovarian reserve decline and makes possible preventive fertility preservation.//////////////////