NCBI Summary:
This gene product belongs to a family of nonselective cation channels that function in a variety of processes, including temperature sensation and vasoregulation. The thermosensitive members of this family are expressed in subsets of sensory neurons that terminate in the skin, and are activated at distinct physiological temperatures. This channel is activated at temperatures between 22 and 40 degrees C. This gene lies in close proximity to another family member gene on chromosome 17, and the two encoded proteins are thought to associate with each other to form heteromeric channels. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2012]
General function
Channel/transport protein
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Early embryo development
Comment
TRPV3 Channels Mediate Strontium-Induced Mouse-Egg Activation. Carvacho I 2013 et al.
In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a transient receptor potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3(-/-) eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, because TrpV3(-/-) eggs failed to conduct Sr(2+) or undergo strontium-induced activation. We propose that TRPV3 is a major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation.
/////////////////////////