Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 375 OKDB#: 4959
 Symbols: MIR375 Species: human
 Synonyms: MIRN375, mir-375, miRNA375, hsa-mir-375  Locus: 2q35 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment miR-375 Inhibits Proliferation of Mouse Pancreatic Progenitor Cells by Targeting YAP1. Zhang ZW 2013 et al. Background/Aims: The Hippo signaling pathway regulates expansion and differentiation of stem cells and tissue progenitor cells during organ development and tissue regeneration. Previous studies have shown that YAP1, a potent effector of the Hippo signaling pathway, plays a crucial role in pancreas development, but the function of YAP1 in pancreatic progenitor cells is less known. Methods: The spatio-temporal expression pattern of YAP1 in mouse developing pancreata was detected by in situ hybridization. The effect of silencing YAP1 on the proliferation of pancreatic progenitor cells was analyzed by CCK-8 assay and Ki67 immunostaining. The regulation of miR-375 on YAP1 expression was determined by dual luciferase reporter assay, QRT-PCR and western blot. Finally, the influence of miR-375 on proliferation of pancreatic progenitor cells was analyzed by CCK-8 assay and Ki67 immunostaining. Results: We found that YAP1 was highly expressed in embryonic and adult pancreatic progenitor cells. Knocking down YAP1 by siRNA inhibited the proliferation of pancreatic progenitor cells. The mouse YAP1 was a target gene of miR-375, and miR-375 could target the 3' UTR of YAP1 mRNA to decrease its protein and mRNA levels. Similar to silencing YAP1 by siRNA, the proliferation of pancreatic progenitor cells was inhibited significantly by miR-375. Conclusion: Our results indicate that YAP1 is necessary for the proliferation of pancreatic progenitor cells and miR-375 participates in regulating YAP1 expression during pancreatic progenitor cells differentiation. 2014 S. Karger AG, Basel. /////////////////////////

NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function RNA processing
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation
Comment MicroRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells. Zhang J et al. (2019) MicroRNAs (miRNAs) have attracted increasing attention for their function in oocyte in vitro maturation (IVM). In this study, we aimed to explore the functional role and underlying mechanism of miR-375 in oocyte IVM. Cumulus-oocyte complexes (COCs) were cultured in standard cell culture conditions until they reach metaphase II (MII) stage. MiR-375 overexpression or knockdown was achieved by corresponding lentiviral transduction. Levels of miR-375, disintegrin and metalloproteinase with thrombospondin-like motifs 1 (ADAMTS1) mRNA and progesterone receptor (PGR) mRNA were detected by qRT-PCR. Western blotting was used to assess the expression of ADAMTS1 and PGR protein. The targeted interaction between miR-375 and ADAMTS1 or PGR was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Our results demonstrate that miR-375 is downregulated, and ADAMTS1 and PGR are upregulated in cumulus cells during COC maturation. MiR-375 negatively regulates COC maturation. Moreover, ADAMTS1 and PGR are two targets of miR-375 in cumulus cells. ADAMTS1 or PGR knockdown represses COC maturation and miR-375 inhibits the expression levels of ADAMTS1 and PGR in cumulus cells. Additionally, miR-375 overexpression-mediated suppressive effect on COC maturation is abated by ADAMTS1 or PGR expression restoration. In conclusion, our study suggests that miR-375 represses oocyte IVM at least partially through targeting ADAMTS1 and PGR in cumulus cells, providing a novel insight for the involvement and underlying mechanism of miR-375 in oocyte IVM.////////////////// MiR-375 Mediates CRH Signaling Pathway in Inhibiting E2 Synthesis in Porcine Ovary. Yu C et al. (2016) The corticotropin-releasing hormone (CRH) signaling system is involved in numbers of stress-related physiological and pathological responses,including its inhibiting effects on estradiol (E2) synthesis and follicular development in the ovary. In addition, there are reports that microRNAs (miRNAs) can control the function of animal reproductive system. The aim of present study was to investigate the functions of miR-375 and the relationship between miR-375 and CRH signaling molecules in the porcine ovary. First, our common PCR results show that miR-375 and the CRH receptor 1 (CRHR1) are expressed in porcine ovary, whereas CRH receptor 2 (CRHR2) is not detected. We further have located the cell types of miR-375 and CRHR1 by in situ hybridization (ISH), and the results show that miR-375 is located only in the granulosa cells, whereas CRHR1 is positive in all of granulosa cells and oocytes, inferring that miR-375 and CRHR1 are co-localized in granulosa cells. Second, we show that overexpression of miR-375 in cultured granulosa cells suppresses the E2 production, while miR-375 knockdown demonstrates the opposite result. Besides, our in vitro results demonstrate that miR-375 mediates the signaling pathway of CRH inhibiting E2 synthesis. Finally, our data show that the action of miR-375 is accomplished by directly binding to the 3'UTR of specificity protein1 (SP1) mRNA to decrease the SP1 protein level. Thus, we conclude that miR-375 is a key factor in regulating E2 synthesis by mediating the CRH signaling pathway.//////////////////
Expression regulated by Growth Factors/ cytokines, CRH
Comment
Ovarian localization Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Jan. 3, 2014, 11:30 a.m. by: hsueh   email:
home page:
last update: Sept. 25, 2019, 3:23 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form