Comment |
miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Tu F 2014 et al.
During ovarian follicular growth and development, only a few follicles actually ovulate. Recently, it was found that follicular atresia is triggered by granulosa cell apoptosis, but the molecular mechanism of follicular atresia was not understood. Using flow cytometry, we found that miR-34a promotes granulosa cell apoptosis in pig ovarian follicles. In addition, inhibin beta B was found to be a miR-34a target gene, based on luciferase reporter assays, quantitative RT-PCR and Western blotting. Taken together, our data indicate that miR-34a plays an important role in granulosa cell apoptosis by targeting the INHBB gene in the porcine ovary.
/////////////////////////MicroRNA-34 family expression in bovine gametes and preimplantation embryos. Tscherner A 2014 et al.
BACKGROUND
Oocyte fertilization and successful embryo implantation are key events marking the onset of pregnancy. In sexually reproducing organisms, embryogenesis begins with the fusion of two haploid gametes, each of which has undergone progressive stages of maturation. In the final stages of oocyte maturation, minimal transcriptional activity is present and regulation of gene expression occurs primarily at the post-transcriptional level. MicroRNAs (miRNA) are potent effectors of post-transcriptional gene silencing and recent evidence demonstrates that the miR-34 family of miRNA are involved in both spermatogenesis and early events of embryogenesis.
METHODS
The profile of miR-34 miRNAs has not been characterized in gametes or embryos of Bos taurus. We therefore used quantitative reverse transcription PCR (qRT-PCR) to examine this family of miRNAs: miR-34a, -34b and -34c as well as their precursors in bovine gametes and in vitro produced embryos. Oocytes were aspirated from antral follicles of bovine ovaries, and sperm cells were isolated from semen samples of 10 bulls with unknown fertility status. Immature and in vitro matured oocytes, as well as cleaved embryos, were collected in pools. Gametes, embryos and ovarian and testis tissues were purified for RNA.
RESULTS
All members of the miR-34 family are present in bovine spermatozoa, while only miR-34a and -34c are present in oocytes and cleaved (2-cell) embryos. Mir-34c demonstrates variation among different bulls and is consistently expressed throughout oocyte maturation and in the embryo. The primary transcript of the miR-34b/c bicistron is abundant in the testes and present in ovarian tissue but undetectable in oocytes and in mature spermatozoa.
CONCLUSIONS
The combination of these findings suggest that miR-34 miRNAs may be required in developing bovine gametes of both sexes, as well as in embryos, and that primary miR-34b/c processing takes place before the completion of gametogenesis. Individual variation in sperm miR-34 family abundance may offer potential as a biomarker of male bovine fertility.
/////////////////////////
|