Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 125b-2 OKDB#: 4979
 Symbols: MIR125B2 Species: human
 Synonyms: MIRN125B2, mir-125b-2  Locus: 21q21.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function Cell proliferation
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Follicle atresia
Comment microRNA-125b Regulates Apoptosis by Targeting Bone Morphogenetic Protein Receptor 1B in Yak Granulosa Cells. Yao Y et al. (2018) The intronic microRNA, miR-125b, plays a vital role in promyelocytic and hematopoietic stem cells, and in the development and apoptosis of cancer cells. In this study, we showed that miR-125b regulates granulosa cell (GC) apoptosis in the yak ovary. Bioinformatic analyses and luciferase reporter assays demonstrated that bone morphogenetic protein receptor type 1B (BMPR1B) is an miR-125b target. miR-125b overexpression induced apoptosis in yak GC, and affected the mRNA and protein expression of BMPR1B and the ratio of Bcl2/Bax. Silencing of miR-125b decreased the rate of yak GC apoptosis and increased the ratio of Bcl2/Bax. In addition, the effects of an miR-125b inhibitor were overturned by cotransfection with siRNA-BMPR1B2 (siRNA-299) in yak GC. Together, these results demonstrated that miR-125b regulates GC apoptosis in the yak ovary by targeting BMPR1B.////////////////// MiR-125b Regulates Primordial Follicle Assembly by Targeting Activin Receptor Type 2a in Neonatal Mouse Ovary. Wang S et al. (2016) The establishment of primordial follicle pool is crucial for fertility in mammalian females, and the interruption of overall microRNA production by Dicer1 conditional knockout in female reproductive system results in infertility. However, there are few reports about the functions of individual microRNA in regulating primordial follicle assembly. The present study was aimed to investigate the function of miR-125b, which is conserved and preferentially expressed in mammalian ovary during primordial follicle assembly. Detection of miR-125b in the developing mouse ovaries by real-time PCR and in situ hybridization showed that it was highly expressed perinatally and specifically located in the ovarian somatic cells (OSCs). MiR-125b overexpression blocked the process of primordial follicle assembly in cultured newborn mouse ovaries, while its knockdown promoted this process. Further studies showed that miR-125b regulated the activin/Smad2 signaling in neonatal mouse ovary by directly targeting the 3'-untranslated region of activin receptor type2a (Acvr2a). Overexpression of miR-125b in neonatal mouse ovary suppressed the Acvr2a protein level, attenuating the activin/Smad2 signaling, while knockdown of miR-125b showed opposite effects. In addition, recombinant human Activin A (rh-ActA) down-regulated miR-125b in the neonatal mouse ovary. Overexpression of miR-125b attenuated the promoting effects of rh-ActA on primordial follicle assembly. Taken together, these data suggest that miR-125b blocks the process of primordial follicle assembly, and miR-125b may play this role by regulating the expression of Acvr2a in the activin/Smad2 signaling pathway.////////////////// Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Sen A 2014 et al. Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular development and therefore female fertility. First, we show that androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing expression of the microRNA (miR) miR-125b, which in turn suppresses proapoptotic protein expression. Second, we demonstrate that, independent of transcription, androgens enhance follicle-stimulating hormone (FSH) receptor expression, which then augments FSH-mediated follicle growth and development. Interestingly, we find that the scaffold molecule paxillin regulates both processes, making it a critical regulator of AR actions in the ovary. Finally, we report that low doses of exogenous androgens enhance gonadotropin-induced ovulation in mice, further demonstrating the critical role that androgens play in follicular development and fertility. These data may explain reported positive effects of androgens on ovulation rates in women with diminished ovarian reserve. Furthermore, this study demonstrates mechanisms that might contribute to the unregulated follicle growth seen in diseases of excess androgens such as polycystic ovary syndrome. /////////////////////////
Expression regulated by
Comment
Ovarian localization Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Feb. 12, 2014, 4:30 p.m. by: hsueh   email:
home page:
last update: Oct. 1, 2018, 2:22 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form