Comment |
microRNA-125b Regulates Apoptosis by Targeting Bone Morphogenetic Protein Receptor 1B in Yak Granulosa Cells. Yao Y et al. (2018) The intronic microRNA, miR-125b, plays a vital role in promyelocytic and hematopoietic stem cells, and in the development and apoptosis of cancer cells. In this study, we showed that miR-125b regulates granulosa cell (GC) apoptosis in the yak ovary. Bioinformatic analyses and luciferase reporter assays demonstrated that bone morphogenetic protein receptor type 1B (BMPR1B) is an miR-125b target. miR-125b overexpression induced apoptosis in yak GC, and affected the mRNA and protein expression of BMPR1B and the ratio of Bcl2/Bax. Silencing of miR-125b decreased the rate of yak GC apoptosis and increased the ratio of Bcl2/Bax. In addition, the effects of an miR-125b inhibitor were overturned by cotransfection with siRNA-BMPR1B2 (siRNA-299) in yak GC. Together, these results demonstrated that miR-125b regulates GC apoptosis in the yak ovary by targeting BMPR1B.//////////////////
MiR-125b Regulates Primordial Follicle Assembly by Targeting Activin Receptor Type 2a in Neonatal Mouse Ovary. Wang S et al. (2016) The establishment of primordial follicle pool is crucial for fertility in mammalian females, and the interruption of overall microRNA production by Dicer1 conditional knockout in female reproductive system results in infertility. However, there are few reports about the functions of individual microRNA in regulating primordial follicle assembly. The present study was aimed to investigate the function of miR-125b, which is conserved and preferentially expressed in mammalian ovary during primordial follicle assembly. Detection of miR-125b in the developing mouse ovaries by real-time PCR and in situ hybridization showed that it was highly expressed perinatally and specifically located in the ovarian somatic cells (OSCs). MiR-125b overexpression blocked the process of primordial follicle assembly in cultured newborn mouse ovaries, while its knockdown promoted this process. Further studies showed that miR-125b regulated the activin/Smad2 signaling in neonatal mouse ovary by directly targeting the 3'-untranslated region of activin receptor type2a (Acvr2a). Overexpression of miR-125b in neonatal mouse ovary suppressed the Acvr2a protein level, attenuating the activin/Smad2 signaling, while knockdown of miR-125b showed opposite effects. In addition, recombinant human Activin A (rh-ActA) down-regulated miR-125b in the neonatal mouse ovary. Overexpression of miR-125b attenuated the promoting effects of rh-ActA on primordial follicle assembly. Taken together, these data suggest that miR-125b blocks the process of primordial follicle assembly, and miR-125b may play this role by regulating the expression of Acvr2a in the activin/Smad2 signaling pathway.//////////////////
Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Sen A 2014 et al.
Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular development and therefore female fertility. First, we show that androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing expression of the microRNA (miR) miR-125b, which in turn suppresses proapoptotic protein expression. Second, we demonstrate that, independent of transcription, androgens enhance follicle-stimulating hormone (FSH) receptor expression, which then augments FSH-mediated follicle growth and development. Interestingly, we find that the scaffold molecule paxillin regulates both processes, making it a critical regulator of AR actions in the ovary. Finally, we report that low doses of exogenous androgens enhance gonadotropin-induced ovulation in mice, further demonstrating the critical role that androgens play in follicular development and fertility. These data may explain reported positive effects of androgens on ovulation rates in women with diminished ovarian reserve. Furthermore, this study demonstrates mechanisms that might contribute to the unregulated follicle growth seen in diseases of excess androgens such as polycystic ovary syndrome.
/////////////////////////
|