Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

RAB5A, member RAS oncogene family OKDB#: 5031
 Symbols: RAB5A Species: human
 Synonyms: RAB5  Locus: 3p24.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Steroid metabolism, Oocyte maturation
Comment Role of RAB5A in FSHR-mediated signal transduction in human granulosa cells. Zhu K et al. (2018) Polycystic ovary syndrome, a common condition characterized by endocrine dysfunction, menstrual irregularity, anovulation, and polycystic ovaries, affects 5%-7% of reproductive-age women. RAB5B, which is identified by a genome-wide association study as a risk locus for this syndrome, encodes a small GTPase involved in control of receptor internalization and early endosome fusion. We found that RAB5A mRNA levels in luteinized granulosa cells of obese patients with polycystic ovary syndrome were lower than in those of obese women without the syndrome. RAB5A regulated follicle-stimulating hormone (FSH)-mediated translocation of the FSH receptor (FSHR) from the membrane to the cytoplasm and the subsequent FSH-FSHR signaling pathway. We showed that RAB5A negatively regulated aromatase expression and estradiol synthesis in human granulosa cells in association with changes in FSHR levels by way of the cAMP/PKA/CREB pathway. The regulation of FSHR by RAB5A may have been associated with two transcription factors, USF1 and USF2. In conclusion, RAB5A gene was abnormally expressed in luteinized granulosa cells of obese patients with polycystic ovary syndrome, which may help explain high FSHR levels found in this syndrome.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Rab5a is required for spindle length control and kinetochore-microtubule attachment during meiosis in oocytes. Ma R 2014 et al. Rab GTPases are highly conserved components of vesicle trafficking pathways. Rab5, as a master regulator of endocytic trafficking, has been shown to function in membrane tethering and docking. However, the function of Rab5 in meiosis has not been addressed. Here, we report elongated spindles and misaligned chromosomes, with kinetochore-microtubule misattachments, on specific depletion of Rab5a in mouse oocytes. Moreover, the localization and levels of centromere protein F (CENPF), a component of the nuclear matrix, are severely reduced at kinetochores in metaphase oocytes following Rab5a knockdown. Consistent with this finding, nuclear lamina disassembly in the transition from prophase arrest to meiosis I is also impaired in Rab5a-depleted oocytes. Notably, oocyte-specific ablation of CENPF phenocopies the meiotic defects resulting from Rab5a knockdown. In summary, our data support a model where Rab5a-positive vesicles, likely through interaction with nuclear lamina, modulate CENPF localization and levels at centromeres, consequently ensuring proper spindle length and kinetochore-microtubule attachment in meiotic oocytes.-Ma, R., Hou, X., Zhang, L., Sun, S.-C., Schedl, T., Moley, K., Wang, Q. Rab5a is required for spindle length control and kinetochore-microtubule attachment during meiosis in oocytes. /////////////////////////
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 4, 2014, 1:30 p.m. by: hsueh   email:
home page:
last update: May 10, 2020, 12:59 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form