Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

IMP (inosine 5'-monophosphate) dehydrogenase 1 OKDB#: 5064
 Symbols: IMPDH1 Species: human
 Synonyms: IMPD, RP10, IMPD1, LCA11, sWSS2608,  Locus: 7q31.3-q32 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene acts as a homotetramer to regulate cell growth. The encoded protein is an enzyme that catalyzes the synthesis of xanthine monophosphate (XMP) from inosine-5'-monophosphate (IMP). This is the rate-limiting step in the de novo synthesis of guanine nucleotides. Defects in this gene are a cause of retinitis pigmentosa type 10 (RP10). Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2008]
General function Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oocyte maturation , Germinal vesicle breakdown
Comment Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Wigglesworth K 2013 et al. Coordinated regulation of oocyte and ovarian follicular development is essential for fertility. In particular, the progression of meiosis, a germ cell-specific cell division that reduces the number of chromosomes from diploid to haploid, must be arrested until just before ovulation. Follicular somatic cells are well-known to impose this arrest, which is essential for oocyte-follicle developmental synchrony. Follicular somatic cells sustain meiotic arrest via the natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system, and possibly also via high levels of the purine hypoxanthine in the follicular fluid. Upon activation by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces cyclic guanosine monophosphate (cGMP), which maintains meiotic arrest after transfer to the oocyte via gap junctions. Here we report that both the NPPC/NPR2 system and hypoxanthine require the activity of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme required for the production of guanylyl metabolites and cGMP. Furthermore, oocyte-derived paracrine factors, particularly the growth differentiation factor 9-bone morphogenetic protein 15 heterodimer, promote expression of Impdh and Npr2 and elevate cGMP levels in cumulus cells. Thus, although the somatic compartment of ovarian follicles plays an essential role in the maintenance of oocyte meiotic arrest, as has been known for many years, this function of the somatic cells is surprisingly regulated by signals from the oocyte itself. /////////////////////////
Expression regulated by Growth Factors/ cytokines
Comment
Ovarian localization Cumulus
Comment
Follicle stages Preovulatory
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Sept. 8, 2014, 3:12 p.m. by: hsueh   email:
home page:
last update: Sept. 8, 2014, 3:12 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form