NCBI Summary:
This gene encodes a member of the IML1 family of proteins involved in G-protein signaling pathways. The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth by sensing the availability of nutrients. The protein encoded by this gene is a component of the GATOR1 (GAP activity toward Rags) complex which inhibits the amino acid-sensing branch of the mTORC1 pathway. Mutations in this gene are associated with autosomal dominant familial focal epilepsy with variable foci. A single nucleotide polymorphism in an intron of this gene has been associated with an increased risk of hepatocellular carcinoma in individuals with chronic hepatitis C virus infection. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]
General function
Intracellular signaling cascade
Comment
Cellular localization
Cytoplasmic
Comment
Ovarian function
Oogenesis, Oocyte growth
Comment
TORC1 regulators Iml1/GATOR1 and GATOR2 control meiotic entry and oocyte development in Drosophila. Wei Y et al. (2014) In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.//////////////////