N6-methyladenosine marks primary microRNAs for processing. Alarcón CR et al. (2015) The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.//////////////////
NCBI Summary:
This gene encodes the 70 kDa subunit of MT-A which is part of N6-adenosine-methyltransferase. This enzyme is involved in the posttranscriptional methylation of internal adenosine residues in eukaryotic mRNAs, forming N6-methyladenosine. [provided by RefSeq, Jul 2008]
Oocyte maturation, Early embryo development
, Pluripotent cell derivation
Comment
METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition. Sui X et al. (2020) N6-methyladenosine (m6A) is the most prevalent epigenetic modification of messenger RNA (mRNA) in higher eukaryotes; this modification is mainly catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. Although m6A modification has been proven to play an essential role in diverse biological processes, our knowledge of Mettl3 is still limited because Mettl3 mutations are lethal to embryos in both mammals and plants. In this study, we knocked down Mettl3 by microinjection of its specific short interfering RNAs (siRNAs) or morpholino into fully grown germinal vesicle (GV) oocytes. As a result, we demonstrated that knocking down Mettl3 in female germ cells severely inhibited oocyte maturation by decreasing mRNA translation efficiency and led to defects in the maternal-to-zygotic transition, probably due to its interference in disrupting mRNA degradation. The discovery from this study suggests that the reversible m6A modification has vital functions in mammalian oocyte maturation and pre-implantation embryonic development processes.//////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. McGraw S et al. (2007) Distinct epigenetic modification events regulate gene expression and chromatin structure during the period between the immature oocyte and the blastocyst. Throughout this developmental period, important methylation fluctuations occur on genomic DNA and histones. Finding single or combinations of factors, which are at work during this period is essential to understand the entire epigenetic process. With this in mind, we assessed the precise temporal expression profile, during preimplantation embryo development, of 15 key regulators involved in RNA, DNA or histone methylation, chromatin modification or silencing and transcription regulation. To achieve this, real-time RT-PCR was used to quantify the mRNA levels of ATF7IP, DMAP1, EHMT1, EHMT2, HELLS, JARID1A, JARID1B, JMJD1A, JMJD2A, LSD1, MeCP2, METTL3, PRMT2, PRMT5 and RCOR2, in the oocyte and throughout in vitro bovine embryo development. Our results demonstrate that all the 15 key regulators were present to different degrees in the developmental stages tested, and they can be divided into three different groups depending on their respective mRNA profile.//////////////////
Follicle stages
Comment
Phenotypes
Mutations
1 mutations
Species: other
Mutation name: type: null mutation fertility: subfertile Comment: Mettl3 Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish. Xia H et al. (2017) N6-methyladenosine (m6A), catalyzed by Mettl3 methyltransferase, is a highly conserved epigenetic modification in eukaryotic mRNA. Previous studies have implicated m6A modification in multiple biological processes, but the in vivo function of m6A has been difficult to study, because mettl3 mutants are embryonic lethal in both mammals and plants. In this study, we have used transcription activator-like effector nucleases and generated viable zygotic mettl3 mutant, Zmettl3m/m , in zebrafish. We find that the oocytes in Zmettl3m/m adult females are stalled in early development and the ratio of full grown stage (FG) follicles is significantly lower than that of wild type. Human chorionic gonadotropin-induced ovarian germinal vesicle breakdown in vitro and the numbers of eggs ovulated in vivo are both decreased as well, while the defects of oocyte maturation can be rescued by sex hormone in vitro and in vivo In Zmettl3m/m adult males, we find defects in sperm maturation and sperm motility is significantly reduced. Further study shows that 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels are significantly decreased in Zmettl3m/m , and defective gamete maturation is accompanied by decreased overall m6A modification levels and disrupted expression of genes critical for sex hormone synthesis and gonadotropin signaling in Zmettl3m/m Thus, our study provides the first in vivo evidence that loss of Mettl3 leads to failed gamete maturation and significantly reduced fertility in zebrafish. Mettl3 and m6A modifications are essential for optimal reproduction in vertebrates.//////////////////