A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Liu J et al. (2014) N(6)-methyladenosine (m(6)A) is the most prevalent and reversible internal modification in mammalian messenger and noncoding RNAs. We report here that human methyltransferase-like 14 (METTL14) catalyzes m(6)A RNA methylation. Together with METTL3, the only previously known m(6)A methyltransferase, these two proteins form a stable heterodimer core complex of METTL3-METTL14 that functions in cellular m(6)A deposition on mammalian nuclear RNAs. WTAP, a mammalian splicing factor, can interact with this complex and affect this methylation.//////////////////
Novel circGFRα1 Promotes Self-Renewal of Female Germline Stem Cells Mediated by m6A Writer METTL14. Li X et al. (2021) Circular RNAs (circRNAs) play important roles in the self-renewal of stem cells. However, their significance and regulatory mechanisms in female germline stem cells (FGSCs) are largely unknown. Here, we identified an N6-methyladenosine (m6A)-modified circRNA, circGFRα1, which is highly abundant in mouse ovary and stage-specifically expressed in mouse FGSC development. Knockdown of circGFRα1 in FGSCs significantly reduced their self-renewal. In contrast, overexpression of circGFRα1 enhanced FGSC self-renewal. Mechanistically, circGFRα1 promotes FGSC self-renewal by acting as a competing endogenous RNA (ceRNA) that sponges miR-449, leading to enhanced GFRα1 expression and activation of the glial cell derived neurotrophic factor (GDNF) signaling pathway. Furthermore, circGFRα1 acts as a ceRNA based on METTL14-mediated cytoplasmic export through the GGACU motif. Our study should help to understand the mechanisms regulating germ cell development, add new evidence on the mechanism of action of circRNA, and deepen our understanding of the development of FGSCs.//////////////////