NCBI Summary:
This gene encodes a member of the voltage-dependent anion channel pore-forming family of proteins that are considered the main pathway for metabolite diffusion across the mitochondrial outer membrane. The encoded protein is also thought to be involved in the mitochondrial apoptotic pathway via regulation of BCL2-antagonist/killer 1 protein activity. Pseudogenes have been identified on chromosomes 1, 2, 12 and 21, and alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]
General function
Channel/transport protein
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Comment
MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Yuan J et al. (2015) Oogenesis is essential for female gamete production in mammals. The total number of ovarian follicles is determined early in life and production of ovarian oocytes is thought to stop in the following lifetime. However, the molecular mechanisms underling oogenesis, particularly autophagy regulation in the ovary, remain largely unknown. Here, we reveal an important MYBL2-VDAC2-BECN1-BCL2L1 pathway linking autophagy suppression in the developing ovary. The transcription factors GATA1 and MYBL2 can bind to and activate the Vdac2 promoter. MYBL2 regulates the spatiotemporal expression of VDAC2 in the developing ovary. Strikingly, in the VDAC2 transgenic pigs (Sus scrofa/Ss), VDAC2 exerts its function by inhibiting autophagy in the ovary. In contrast, Vdac2 knockout promotes autophagy. Moreover, VDAC2-mediated autophagy suppression is dependent on its interactions with both BECN1 and BCL2L1 to stabilize the BECN1 and BCL2L1 complex, suggesting VDAC2 as an autophagy suppressor in the pathway. Our findings provide a functional connection among the VDAC2, MYBL2, the BECN1-BCL2L1 pathway and autophagy suppression in the developing ovary, which is implicated in improving female fecundity.//////////////////