Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

PAT1 homolog 2 OKDB#: 5220
 Symbols: PATL2 Species: human
 Synonyms: OOMD4, Pat1a, hPat1a  Locus: 15q21.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function Transcription factor
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation
Comment PATL2 regulated the apoptosis of ovarian granulosa cells in patients with PCOS. Peng SL et al. (2021) PCOS often showed abnormal follicular development. Previous studies have found that the increased apoptosis of granulosa cells (GCs) is one of the key factors leading to follicular dysplasia. It has been found that the decrease or deletion of PATL2 function can significantly inhibit the development and maturation of human oocytes. We found that PATL2 was also expressed in human ovarian GCs, suggesting that PATL2 may be involved in the regulation of related biological events in GCs. This study aims to explore the function of PATL2 on regulation of GCs apoptosis, and the potential role of PATL2 in the development of PCOS-related abnormal follicles. The follicular GCs of PCOS patients and normal ovulating female patients were collected. Moreover, human granular cell line (KGN) was used for in vitro experiments. (1) The maturation rate and fertilization rate of oocytes in the PCOS group were significantly lower than those in the normal control group (p<0.05). (2) Flow cytometry and TUNEL staining showed that the apoptosis level of GCs in the PCOS group was significantly increased. (3) Immunofluorescence and Western Blot showed that the PATL2 expression level of GCs in the PCOS group was significantly reduced. (4) Knocking down the expression of PATL2 by siRNA significantly prevented the apoptosis of GCs. Reduced PATL2 could resulted in the increased apoptosis level of ovarian GCs, which might be closely related to the occurrence and development of abnormal follicles in PCOS.//////////////////The Recurrent Mutation in PATL2 Inhibits Its Degradation Thus Causing Female Infertility Characterized by Oocyte Maturation Defect Through Regulation of the Mos-MAPK Pathway. Cao Q et al. (2021) PAT1 homolog 2 (PATL2), encoding an RNA-binding protein, is a repressor involved in the translational regulation of maternal mRNAs during oocyte maturation. Previous studies have reported mutations in PATL2 those led to female infertility with oocyte maturation arrest; however, the mechanisms by which mutations affected meiotic maturation remained unclear. Here, we identified several novel and recurrent mutations of PATL2 in patients with similar phenotype, and chose the missense mutation c.649 T>A p.Tyr217Asn in PATL2 (PATL2Y217N) as a typical to investigate the underlying mechanisms. We confirmed that this mutation disturbed oocyte maturation and observed morphological defects of large polar body, symmetrical division and abnormal spindle after microinjection of corresponding mutated mRNA. We further evaluated the effect of the PATL2Y217N mutation in 293T cells, and found this mutation decreased the ubiquitination level and degradation of PATL2. Then, abnormally increased PATL2 bound mRNAs of Mos, an upstream activator of mitogen activated protein kinase (MAPK), to regulate its translational activity and subsequently impaired MAPK signaling pathway and oocyte meiosis. These results dissented from the previous view that PATL2 mutations reduced their expression and highlight the role of PATL2 in translational regulation of Mos and its association with MAPK signaling pathway during oocyte meiotic maturation.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Molecular cloning and characterization of oocyte-specific Pat1a in Rana rugosa frogs. Nakamura Y et al. (2015) The Pat1 gene is expressed in the immature oocytes of Xenopus, and is reportedly involved in regulating the translation of maternal mRNAs required for oocyte-maturation. However, it is still unknown when Pat1a first appears in the differentiating ovary of amphibians. To address this issue, we isolated the full-length Pat1a cDNA from the frog Rana rugosa and examined its expression in the differentiating ovary of this frog. Among eight different tissues examined, the Pat1a mRNA was detectable in only the ovary. When frozen sections from the ovaries of tadpoles at various stages of development were immunostained for Vasa-a germ cell-specific protein-and Pat1a, Vasa-immunopositive signals were observed in all of the germ cells, whereas Pat1a signals were confined to the growing oocytes (50-200 μm in diameter), and absent from small germ cells (<50 μm in diameter). Forty days after testosterone injection into tadpoles to induce female-to-male sex-reversal, Pat1a-immunoreactive oocytes had disappeared completely from the sex-reversed gonad, but Vasa-positive small germ cells persisted. Thus, Pat1a would be a good marker for identifying the sexual status of the sex-reversing gonad in amphibians. In addition, fluorescence in situ hybridization analysis showed Pat1a to have an autosomal locus, suggesting that Pat1a transcription is probably regulated by a tissue-specific transcription factor in R. rugosa. J. Exp. Zool. 9999A: XX-XX, 2015. © 2015 Wiley Periodicals, Inc.//////////////////
Follicle stages
Comment
Phenotypes
Mutations 5 mutations

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Biallelic Mutations in PATL2 Cause Female Infertility Characterized by Oocyte Maturation Arrest. Chen B et al. (2017) Oocyte maturation arrest results in female infertility, but the genetic determinants of human oocyte maturation arrest remain largely unknown. Previously, we identified TUBB8 mutations responsible for human oocyte maturation arrest, indicating the important role of genetic factors in the disorder. However, TUBB8 mutations account for only around 30% of individuals with oocyte maturation arrest; thus, the disorder is likely to involve other genetic factors that are as yet unknown. Here, we initially identified a homozygous nonsense mutation of PATL2 (c.784C>T [p.Arg262(∗)]) in a consanguineous family with a phenotype characterized by human oocyte germinal vesicle (GV) arrest. Subsequent mutation screening of PATL2 in a cohort of 179 individuals identified four additional independent individuals with compound-heterozygous PATL2 mutations with slight phenotypic variability. A genetic burden test further confirmed the genetic contribution of PATL2 to human oocyte maturation arrest. By western blot in HeLa cells, identification of splicing events in affected individuals' granulosa cells, and immunostaining in affected individuals' oocytes, we provide evidence that mutations in PATL2 lead to decreased amounts of protein. These findings suggest an important role for PATL2 mutations in oocyte maturation arrest and expand our understanding of the genetic basis of female infertility.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Maddirevula S et al. (2017) Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization techniques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure. Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of translation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary for female meiosis.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. Christou-Kent M et al. (2018) The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA-binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2-/- animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. Wu L et al. (2019) Oocyte maturation arrest results in primary female infertility, but the genetic etiology of this phenotype remains largely unknown. Previously, we and other groups have reported that biallelic mutations in PATL2 are mainly responsible for human oocyte germinal vesicle-stage arrest and that the specific phenotype varies for different mutations. Here, we identified four novel missense mutations (p.V260M, p.Q300*, p.T425P, and p.D293Y), a novel frameshift mutation (p.N239Tfs*9), and a reported splicing mutation (p.R75Vfs*21) in PATL2 in seven affected individuals from five unrelated families, showing a multiplicity of phenotypes in oocyte maturation arrest, fertilization failure, or embryonic developmental arrest, which further expands the mutational and phenotypic spectrum in patients with PALTL2 mutations. This work further indicates the critical role of PATL2 in oocyte maturation and early embryo development and will provide a basis for pursuing the determination of genetic variation in PALT2 as an additional criterion for evaluating the quality of oocytes and embryos for assisted reproduction techniques.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel homozygous mutations in PATL2 lead to female infertility with oocyte maturation arrest. Liu Z et al. (2020) To identify the disease gene in 40 patients with female infertility due to oocyte maturation arrest. Genomic DNA was extracted from peripheral blood of 40 patients and their family members. Whole-exome sequencing was performed on the patients, and the PATL2 mutations were identified and confirmed by Sanger sequencing. Harmfulness of the mutations was analyzed by SIFT, Polyphen-2, Mutation Taster, and M-CAP software, and we used western immunoblotting analysis to check the effect of mutations on PATL2 protein expression in vitro. Two novel missense mutations c.1528C>A (p.Pro510Thr) and c.1376C>A (p.Ser459Tyr) in PATL2 were identified in three patients (7.5%) from two consanguineous families in our cohort. We found that mutations in PATL2 resulted in variable oocyte phenotypes, including GV arrest, MI arrest, and morphologic abnormalities. Western immunoblotting analysis showed that the expression levels of the two novel mutant PATL2 proteins decreased significantly. We identified two novel PATL2 mutations that caused oocyte maturation arrest and abnormal morphology, and variable phenotypes in patients.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 6, 2015, 2:19 p.m. by: system   email:
home page:
last update: May 25, 2021, 9:36 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form