Comment |
Contributions of UBE2C and UBE2S to meiotic progression of porcine oocytes. Fujioka YA et al. (2018) Vertebrate oocytes arrested at the first meiotic prophase must proceed to the second meiotic metaphase (MII) before fertilization. This meiotic process requires the precise control of protein degradation. Part of the protein degradation in oocytes is controlled by members of the ubiquitin-conjugating enzyme family, UBE2C and UBE2S, which are known to participate in mono-ubiquitination and poly-ubiquitination, respectively. Although UBE2 enzymes have been well studied in mitosis, their contribution to mammalian oocyte meiosis is relatively unknown and has been studied only in mice. Here, we investigated the contribution of UBE2C and UBE2S to porcine oocyte maturation using an RNA injection method. Overexpression of UBE2S prevented MII arrest of oocytes and led to the formation of a pronucleus (PN) at 48 h of culture. This effect was also observed for prolonged cultures of UBE2C-overexpressing oocytes, suggesting the effectiveness of poly-ubiquitination in the rapid escape from M-phase in porcine oocytes. Although the inhibition of either UBE2C or UBE2S by antisense RNA (asRNA) injection had no effect on oocyte maturation, asRNA-injected oocytes showed inhibited PN formation after parthenogenetic activation. These results indicated that ubiquitination of certain factors by UBE2S and UBE2C plays a role in the escape from MII arrest in porcine oocytes. Further investigations to identify the factors and how mono- and/or poly-ubiquitination contributes to protein degradation could provide a better understanding of UBE2 roles in oocyte maturation.//////////////////
Appropriate expression of Ube2C and Ube2S controls the progression of the first meiotic division. Ben-Eliezer I et al. (2015) Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.-Ben-Eliezer, I., Pomerantz, Y., Galiani, D., Nevo, N., Dekel, N. Appropriate expression of Ube2C and Ube2S controls the progression of the first meiotic division.//////////////////
|