General Comment |
Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Dejosez M et al. (2013) Ensuring cooperation among formerly autonomous cells has been a central challenge in the evolution of multicellular organisms. One solution is monoclonality, but this option still leaves room for exploitative behavior, as it does not eliminate genetic and epigenetic variability. We therefore hypothesized that embryonic development must be protected by robust regulatory mechanisms that prevent aberrant clones from superseding wild-type cells. Using a genome-wide screen in murine induced pluripotent stem cells, we identified a network of genes (centered on p53, topoisomerase 1, and olfactory receptors) whose down-regulation caused the cells to replace wild-type cells in vitro and in the mouse embryo--without perturbing normal development. These genes thus appear to fulfill an unexpected role in fostering cell cooperation.//////////////////
NCBI Summary:
This gene encodes a member of the tumor necrosis factor receptor family. The encoded transmembrane protein is a receptor for the soluble ligand ectodysplasin A, and can activate the nuclear factor-kappaB, JNK, and caspase-independent cell death pathways. It is required for the development of hair, teeth, and other ectodermal derivatives. Mutations in this gene result in autosomal dominant and recessive forms of hypohidrotic ectodermal dysplasia. [provided by RefSeq, Jul 2008]
|