Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

SUMO1/sentrin/SMT3 specific peptidase 3 OKDB#: 5283
 Symbols: SENP3 Species: human
 Synonyms: SSP3, Ulp1, SMT3IP1  Locus: 17p13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The reversible posttranslational modification of proteins by the addition of small ubiquitin-like SUMO proteins (see SUMO1; MIM 601912) is required for numerous biologic processes. SUMO-specific proteases, such as SENP3, are responsible for the initial processing of SUMO precursors to generate a C-terminal diglycine motif required for the conjugation reaction. They also have isopeptidase activity for the removal of SUMO from high molecular mass SUMO conjugates (Di Bacco et al., 2006 [PubMed 16738315]).[supplied by OMIM, Jun 2009]
General function Microtubule binding, Enzyme
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation , First polar body extrusion
Comment The SUMO Protease SENP3 Orchestrates G2-M Transition and Spindle Assembly in Mouse Oocytes. Huang CJ et al. (2015) Oocyte meiosis is a transcription quiescence process and the cell-cycle progression is coordinated by multiple post-translational modifications, including SUMOylation. SENP3 an important deSUMOylation protease has been intensively studied in ribosome biogenesis and oxidative stress. However, the roles of SENP3 in cell-cycle regulation remain enigmatic, particularly for oocyte meiotic maturation. Here, we found that SENP3 co-localized with spindles during oocyte meiosis and silencing of SENP3 severely compromised the M phase entry (germinal vesicle breakdown, GVBD) and first polar body extrusion (PBI). The failure in polar body extrusion was due to the dysfunction of γ-tubulin that caused defective spindle morphogenesis. SENP3 depletion led to mislocalization and a substantial loss of Aurora A (an essential protein for MTOCs localization and spindle dynamics) while irregularly dispersed distribution of Bora (a binding partner and activator of Aurora A) in cytoplasm instead of concentrating at spindles. The SUMO-2/3 but not SUMO-1 conjugates were globally decreased by SENP3 RNAi. Additionally, the spindle assembly checkpoint remained functional upon SENP3 RNAi. Our findings renew the picture of SENP3 function by exploring its role in meiosis resumption, spindle assembly and following polar body emission during mouse oocyte meiotic maturation, which is potentially due to its proteolytic activity that facilitate SUMO-2/3 maturation.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 28, 2015, 11:34 a.m. by: system   email:
home page:
last update: Oct. 28, 2015, 11:36 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form