NCBI Summary:
This gene encodes a protein that is clearly involved in kinetochore function although an exact role is not known. It interacts with ZW10, another kinetochore protein, possibly regulating the association between ZW10 and kinetochores. The encoded protein localizes to prophase kinetochores before ZW10 does and it remains detectable on the kinetochore until late anaphase. It has a uniform distribution in the cytoplasm of interphase cells. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
General function
Comment
Cellular localization
Cytoplasmic
Comment
Ovarian function
Oocyte maturation
Comment
Zwint-1 is required for spindle assembly checkpoint function and kinetochore-microtubule attachment during oocyte meiosis. Woo Seo D et al. (2015) The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.//////////////////